Mashiyev R.A.Ekincioglu I.20.04.20192019-04-2020.04.20192019-04-2020160163-0563https://dx.doi.org/10.1080/01630563.2016.1205088https://hdl.handle.net/20.500.12403/591This article deals with a quasilinear elliptic equation with variable exponent under a homogenous Dirichlet boundary-value condition, where nonlinearity also depends on the gradient of the solution. By using an iterative method based on Mountain Pass techniques, the existence of a positive solution is obtained. © 2016, Copyright © Taylor & Francis Group, LLC.eninfo:eu-repo/semantics/closedAccessIteration methodsMountain Pass theoremp(x)-Laplacianvariable exponent Sobolev spacesControl nonlinearitiesElectrorheological fluidsLandformsLinear equationsSobolev spacesDirichlet boundaryIteration methodMountain pass theoremP (x)-LaplacianPositive solutionQuasilinear elliptic equationsVariable exponent Sobolev spaceVariable exponentsIterative methodsIteration methodsMountain Pass theoremp(x)-Laplacianvariable exponent Sobolev spacesControl nonlinearitiesElectrorheological fluidsLandformsLinear equationsSobolev spacesDirichlet boundaryIteration methodMountain pass theoremP (x)-LaplacianPositive solutionQuasilinear elliptic equationsVariable exponent Sobolev spaceVariable exponentsIterative methodsElectrorheological Fluids Equations Involving Variable Exponent with Dependence on the Gradient via Mountain Pass TechniquesArticle3791144115710.1080/01630563.2016.12050882-s2.0-84986903110Q2WOS:000382951000006Q3