Hasanov, Javanshir J.Ayazoglu, RabilBayrakci, Simten2024-10-042024-10-0420202391-5455https://doi.org/10.1515/math-2020-0033http://hdl.handle.net/20.500.12403/3054In this article, we consider the Laplace-Bessel differential operator Delta(Bk,n) = Sigma(k)(i=1) (partial derivative(2)/partial derivative x(i)(2) + gamma(i)/x(i) partial derivative/partial derivative x(i)) + Sigma(n)(i=k+1) partial derivative(2)/partial derivative x(i)(2), gamma(1) > 0,..., gamma(k) > 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator M-b,M-gamma and the commutator [b, A(gamma)] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator [b, I-alpha,I-gamma] of the B-Riesz potential on B-Morrey spaces L-p,L-lambda,L-gamma, when b is an element of BMO gamma.eninfo:eu-repo/semantics/openAccesscommutatorgeneralized shift operatorB-Riesz potentialB-maximal functionB-Morrey spacebounded mean oscillation (BMO) spaceB-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials on B-Morrey spacesArticle1871573010.1515/math-2020-00332-s2.0-85089201366Q3WOS:000551417700001Q3