Show simple item record

dc.contributor.authorKahya V.
dc.contributor.authorTuran M.
dc.date.accessioned20.04.201910:49:12
dc.date.accessioned2019-04-20T21:43:03Z
dc.date.available20.04.201910:49:12
dc.date.available2019-04-20T21:43:03Z
dc.date.issued2018
dc.identifier.issn1359-8368
dc.identifier.urihttps://dx.doi.org/10.1016/j.compositesb.2018.04.011
dc.identifier.urihttps://hdl.handle.net/20.500.12403/362
dc.description.abstractThis paper presents a finite element model based on the first-order shear deformation theory for free vibration and buckling analyses of functionally graded (FG) sandwich beams. The present element has 3 N + 7 degrees-of-freedom for an N-layer beam. Lagrange's equations are employed for derivation of the equations of motion. Two types of FG sandwich beams are considered: (a) Type A with FG faces and homogeneous ceramic core, and (b) Type B with homogeneous ceramic and metal faces and FG core. Natural frequencies and buckling loads are calculated numerically for different boundary conditions, power-law indices, and span-to-height ratios. Accuracy of the present element is demonstrated by comparisons with the results available, and discussions are made on the results given in graphs and tables for the sandwich beams considered. © 2018 Elsevier Ltden_US
dc.language.isoengen_US
dc.publisherElsevier Ltd
dc.relation.isversionof10.1016/j.compositesb.2018.04.011
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBuckling
dc.subjectFinite element method
dc.subjectFirst-order shear deformation theory
dc.subjectFree vibration
dc.subjectFunctionally graded material
dc.subjectBuckling
dc.subjectCeramic materials
dc.subjectComposite beams and girders
dc.subjectDegrees of freedom (mechanics)
dc.subjectEquations of motion
dc.subjectFunctionally graded materials
dc.subjectPlates (structural components)
dc.subjectSandwich structures
dc.subjectShear deformation
dc.subjectVibration analysis
dc.subjectBuckling analysis
dc.subjectDifferent boundary condition
dc.subjectFirst-order shear deformation theory
dc.subjectFree vibration
dc.subjectFunctionally graded
dc.subjectHomogeneous ceramics
dc.subjectLagrange's equation
dc.subjectStability analysis
dc.subjectFinite element method
dc.subjectBuckling
dc.subjectFinite element method
dc.subjectFirst-order shear deformation theory
dc.subjectFree vibration
dc.subjectFunctionally graded material
dc.subjectBuckling
dc.subjectCeramic materials
dc.subjectComposite beams and girders
dc.subjectDegrees of freedom (mechanics)
dc.subjectEquations of motion
dc.subjectFunctionally graded materials
dc.subjectPlates (structural components)
dc.subjectSandwich structures
dc.subjectShear deformation
dc.subjectVibration analysis
dc.subjectBuckling analysis
dc.subjectDifferent boundary condition
dc.subjectFirst-order shear deformation theory
dc.subjectFree vibration
dc.subjectFunctionally graded
dc.subjectHomogeneous ceramics
dc.subjectLagrange's equation
dc.subjectStability analysis
dc.subjectFinite element method
dc.titleVibration and stability analysis of functionally graded sandwich beams by a multi-layer finite elementen_US
dc.typearticleen_US
dc.relation.journalComposites Part B: Engineeringen_US
dc.contributor.departmentBayburt Universityen_US
dc.contributor.authorID55317290500
dc.contributor.authorID57189626900
dc.identifier.volume146
dc.identifier.startpage198
dc.identifier.endpage212
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record