Show simple item record

dc.contributor.authorHasar U.C.
dc.contributor.authorBute M.
dc.contributor.authorBarroso J.J.
dc.contributor.authorSabah C.
dc.contributor.authorKaya Y.
dc.contributor.authorErtugrul M.
dc.date.accessioned20.04.201910:49:12
dc.date.accessioned2019-04-20T21:44:09Z
dc.date.available20.04.201910:49:12
dc.date.available2019-04-20T21:44:09Z
dc.date.issued2014
dc.identifier.issn0740-3224
dc.identifier.urihttps://dx.doi.org/10.1364/JOSAB.31.000939
dc.identifier.urihttps://hdl.handle.net/20.500.12403/784
dc.description.abstractIn this paper, we analyze wave propagation properties (transmitted, reflected, and absorbed powers) of composite multilayer structures consisting of bi-anisotropic metamaterial (MM) slabs and conventional isotropic materials. We also separately investigate the propagation properties of bi-anisotropicMMslabs and conventional materials to better interpret the results. We consider two different bi-anisotropic MM slab structures composed of only splitring- resonators (SRRs) and composing SRRs and a rod. In the analysis, we apply the well-known transfer matrix method to obtain transmitted, reflected, and absorbed powers of the composite structures. From the analysis, we note the following three important results. First, while the transmitted powers from forward and backward directions of the multilayer structure are identical (reciprocal feature), reflected (and absorbed) powers from forward and backward directions of the multilayer structure are different. This difference arises from reflection asymmetric nature of the bi-anisotropic MM slabs. Second, whereas the conventional material loss influences propagation characteristics aside resonance frequencies of bi-anisotropic MM slabs, bi-anisotropic MM loss worsens propagation properties of the multilayer structure at resonance frequencies of these slabs. Third, variations in (or determination of) electromagnetic properties of low-loss thin conventional materials in between two bi-anisotropic MM slabs can be realized at frequencies in which conventional materials demonstrate thickness-resonance effect. © 2014 Optical Society of America.en_US
dc.language.isoengen_US
dc.publisherOptical Society of America
dc.relation.isversionof10.1364/JOSAB.31.000939
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMultilayers
dc.subjectNatural frequencies
dc.subjectOptical anisotropy
dc.subjectRing gages
dc.subjectTransfer matrix method
dc.subjectConventional materials
dc.subjectElectromagnetic properties
dc.subjectForward-and-backward
dc.subjectIsotropic materials
dc.subjectMultilayer structures
dc.subjectPropagation characteristics
dc.subjectPropagation properties
dc.subjectResonance frequencies
dc.subjectMaterials
dc.subjectMultilayers
dc.subjectNatural frequencies
dc.subjectOptical anisotropy
dc.subjectRing gages
dc.subjectTransfer matrix method
dc.subjectConventional materials
dc.subjectElectromagnetic properties
dc.subjectForward-and-backward
dc.subjectIsotropic materials
dc.subjectMultilayer structures
dc.subjectPropagation characteristics
dc.subjectPropagation properties
dc.subjectResonance frequencies
dc.subjectMaterials
dc.titlePower analysis of multilayer structures composed of conventional materials and bi-anisotropic metamaterial slabsen_US
dc.typearticleen_US
dc.relation.journalJournal of the Optical Society of America B: Optical Physicsen_US
dc.contributor.departmentBayburt Universityen_US
dc.contributor.authorID55885911000
dc.contributor.authorID55900943000
dc.contributor.authorID7103318266
dc.contributor.authorID15052388000
dc.contributor.authorID57198066553
dc.contributor.authorID56186565500
dc.identifier.volume31
dc.identifier.issue5
dc.identifier.startpage939
dc.identifier.endpage947
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record