Yazar "Abdioglu, Murat" seçeneğine göre listele
Listeleniyor 1 - 13 / 13
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe AC transport loss analysis of HTS stack busbars for all-electric aircraft with harmonics and DC offset considerations(Iop Publishing Ltd, 2024) Abdioglu, Murat; Gautam, Gaurav; Zhang, Min; Yuan, WeijiaThis paper presents a study of the current carrying capacity and AC loss of high-temperature superconducting (HTS) stacks to be used in busbar applications for all-electric aircraft. A 2D model was developed using COMSOL Multiphysics with a T-A formulation for detailed analysis. The study began by applying a stable 20 kA DC offset current to the HTS stacks to simulate practical operating conditions. Firstly, the behaviour of the critical current was studied under self-field conditions for stacks with different numbers of HTS tapes and spacing. Secondly, AC ripple currents were introduced with DC offsets, and the effects of 3rd and 5th harmonic distortions (HD) were studied. The results show that configurations with 40 tapes and gaps of more than 2 mm are considered suitable for safe current transport under DC conditions. On the other hand, increasing the tape spacing leads to an increase in the safe transport current ripple due to the reduced magnetic field interaction within the stack. In addition, the transport loss decreases as the air gap increases due to the reduction in the self-field, whereas it increases as the number of strips increases. The influence of the 3rd HD on the transport loss is minimal at a ripple current of 1% and slightly noticeable at 2%. However, it becomes more obvious as the ripple current approaches the critical value. Remarkably, even cases with equivalent total HD show significantly higher transport losses when characterised by higher 5th HD than their counterparts with 3rd HD. This comprehensive analysis provides valuable information on the performance characteristics of HTS stacks in all-electric aircraft busbar applications and offers important insights for the development and optimisation of these systems in practical aerospace applications.Öğe Comparing of the Magnetic Force Parameters of Superconducting Maglev System Using Horizontal and Vertical PMG Geometry in Multi-Surface HTS-PMG Arrangement(Springer, 2021) Ozturk, Kemal; Savaskan, Burcu; Abdioglu, Murat; Cansiz, Ahmet; Dilek, Durukan Burak; Karaahmet, ZekeriyaIn this study, a detailed static and dynamic experimental studies were carried out in different cooling heights (CH) by using two different multi-surface HTS-PMG arrangements with horizontal (MS-H) and vertical (MS-V) geometries to determine the optimum magnetic force, static stiffness, dynamic response, and dynamic stiffness parameters of superconducting Maglev system. The maximum levitation force values (in CH = 25 mm) were obtained as 202 N and 84 N, respectively, with horizontal and vertical geometry HTS-PMG arrangements, while the maximum guidance force values (in CH = 5 mm) were obtained as -58 N and -22 N, respectively. Also, the vertical static (in CH = 25 mm) and dynamic stiffness (in CH = 5 mm) values were determined as 33.8 N/mm and 37.8 N/mm, respectively, for MS-H and 12.3 N/mm and 25.1 N/mm, respectively, for MS-V arrangements. The bigger levitation force, guidance force, and both static and dynamic magnetic stiffness values of MS-H arrangement with horizontal geometry than that of MS-V arrangement with vertical geometry indicate that the horizontal HTS-PMG geometry is more suitable for practical Maglev applications in terms of loading capacity and movement stability.Öğe The comparison of levitation and lateral force of bulk and cut-pasted bulk GdBCO samples at different temperatures(Elsevier Science Sa, 2020) Guner, Sait Baris; Abdioglu, Murat; Ozturk, Kemal; Celik, SukruIn this work, in the first time, we have investigated the levitation and lateral force properties of bulk and cut-pasted bulk GdBCO samples at different temperatures and different cooling heights (CH) to determine the effect of cut-pasted process on the magnetic levitation force behaviour. The measurements of superconducting characteristics indicated that the attractive and repulsive force values of cut-pasted GdBCO sample are slightly lesser than those of GdBCO bulk sample. The maximum repulsive and attractive force values obtained as 15.45 N and -4.56 N for GdBCO bulk and as 14.78 N and -3.92 N for cut-pasted GdBCO samples at 37 K. Although there are many fabrication methods as melt-textured growth (MTG), top seeded infiltration growth (TSIG) and TSMG to produce large HTS samples, the desired large sample size and the sample shape compatible with the superconducting magnetic bearing systems are not still sufficient for the technological applications. In this study, the performed cut-pasted process and obtained magnetic levitation force data can be using for the increment sample size and the desired sample shape in the needed different geometry and size for superconducting magnetic bearing systems. (C) 2020 Elsevier B.V. All rights reserved.Öğe Design and Experimental Studies on Superconducting Maglev Systems With Multisurface HTS-PMG Arrangements(IEEE-Inst Electrical Electronics Engineers Inc, 2021) Abdioglu, Murat; Ozturk, Kemal; Ekici, Mehmet; Savaskan, Burcu; Celik, Sukru; Cansiz, AhmetIn this article, we have designed and constructed a new multisurface (MS) high temperature superconductor (HTS) Maglev measurement system to investigate the enhancement of magnetic force properties of Maglev systems via MS HTS configurations above conventional permanent magnetic guideway (PMG). We have investigated both the static force and stiffness behavior and dynamic response characteristics of these MS HTS-PMG arrangements in different field cooling heights (FCHs). Optimum cooling height is determined as FCH 20-30 for both six- and four-HTS configurations. The maximum levitation force values of HTS-PMG arrangement with six-HTS were obtained bigger than that of four-HTS in the unit cryostat volume of MS arrangement, indicating that the HTSs at the bottom side of the cryostat make contribution to the loading capacity of Maglev systems. In the present article, it is observed that the magnetic flux density of bottom surface in addition to upper surface of the PMG can make a contribution to loading performance, vertical and lateral stability of Maglev systems. It is thought that the designed measurement facility and results of this study will be beneficial to increase the magnetic flux density in the unit volume via MS HTS-PMG arrangements for future design and construction of the HTS Maglev systems.Öğe Determination of magnetic levitation force properties of bulk MgB2 for different permanent magnetic guideways in different cooling heights(Elsevier Science Sa, 2020) Savaskan, Burcu; Abdioglu, Murat; Ozturk, KemalIn our study as different from the literature, the magnetic levitation force between a bulk MgB2 and two different permanent magnetic guideway (PMG) arrangements, which are Halbach and Conventional PMGs, were investigated in different cooling heights (CHs) and Field-Cooled (FC) condition at the temperatures of 37 K and 33 K. The cylindrical bulk MgB2 superconductor was fabricated by in-situ solid state reaction process with the diameter of 18 mm and the height of 5 mm. The XRD data indicates well developed MgB2 phase and the Jc value was obtained as 68 kA/cm(2) at 30 K in the self-field. Experimental results show that MgB2 bulk above the Halbach PMG can exhibit better load capability at all the cooling heights between the bulk MgB2 and the PMG due to a more suitable magnetic field distribution. The maximum levitation force for Halbach PMG corresponds to 16.86 N whereas the conventional PMG shows 9.02 N at 37 K in cooling height of 77 mm. Additionally, the maximum levitation force increases while the CH increases because flux exclusion is more effective for larger CHs. It is considered that the experimental results obtained in study are very useful for future Maglev applications, because there are limited number of studies on magnetic levitation force of MgB2 bulk for different MgB2-PMG arrangements. (c) 2020 Elsevier B.V. All rights reserved.Öğe Enhancing magnetic levitation and guidance force and weight efficiency of high-temperature superconducting maglev systems by using sliced bulk YBCO(Wiley, 2023) Abdioglu, Murat; Ozturk, U. Kemal; Guner, Sait Baris; Ozturk, Mehmet; Mollahasanoglu, Hakki; Yanmaz, EkremWe aimed to enhance the magnetic force efficiency of Maglev systems without increasing total weight. For this aim, we divided YBCO bulks into three slices horizontally to utilize the YBCO-permanent magnetic guideway (PMG) interaction surface as much as possible. We used whole YBCO above PMGs with different magnetic pole directions (PMG-A and PMG-B) in two lying positions of transversal and longitudinal and investigated levitation and guidance force performances. It is determined that levitation and guidance forces by using YBCO in transversal lying mode are bigger compared to the longitudinal mode. For sliced YBCO, the maximum levitation force increased by 69% and 78%, while the guidance force enhancements are determined as 212% and 91%, compared to the whole YBCO above PMG-A and PMG-B, respectively. The levitation and guidance force density with respect to the total mass of unit a set of slices YBCO increased by 92% and 106%, respectively, compared to the whole YBCO above PMG-B in transversal mode. Since the higher levitation force and the lower total weight of the onboard unit are important parameters in point of the energy efficiency in Maglev and other levitation applications, the result of this study supplies useful data for the engineers and industrial partners.Öğe Experimental and Numerical Investigation of Levitation Force Parameters of Novel Multisurface Halbach HTS-PMG Arrangement for Superconducting Maglev System(IEEE-Inst Electrical Electronics Engineers Inc, 2021) Ozturk, Kemal; Badia-Majos, Antonio; Abdioglu, Murat; Dilek, Durukan Burak; Gedikli, HasanWe have designed multisurface Halbach high temperature superconductor-permanent magnetic guideway (HTS-PMG) arrangements for magnetically levitated transportation (Maglev) and investigated the static force parameters in addition to the dynamic response characteristics. Three different Halbach HTS-PMG arrangements were used with multisurface (6 HTS, 4 HTS) and single surface (2 HTS) configurations and static and dynamic measurements were carried out in three different field cooling heights (FCHs). The bigger vertical loading capacity and wider loading gap were obtained with multisurface Halbach HTS-PMG arrangements. In addition, nearly four times bigger guidance force values of multisurface arrangements than that of single surface one indicates that the side HTSs in multisurface arrangements make a significant contribution to the guidance force and thus lateral movement stability ofMaglev systems. Both the vertical and lateral dynamic stiffness values increased with decreasing FCH and it can be also said that the dynamic stiffness properties of Maglev systems can be enhanced especially in lateral direction by using the multisurface Halbach HTS-PMG arrangements. Understanding of these experimental observations is supported by dedicated theoretical modelling through a 2-D approximation of the system. We show that by using a single material parameter (the critical current density J(c)) for the whole superconducting set, one may satisfactorily predict the complete series of experiments. The static and dynamic parameters obtained from this study and the results of dedicated theoretical modeling for single-surface and multisurface HTS-PMG arrangements are thought to be helpful for the researchers working on static and dynamic performances of HTS Maglev systems.Öğe Extended 2-D Magnetic Field Modeling of Linear Motor to Investigate the Magnetic Force Parameters of High-Speed Superconducting Maglev(IEEE-Inst Electrical Electronics Engineers Inc, 2023) Ozturk, Ufuk Kemal; Abdioglu, Murat; Ozkat, Erkan Caner; Mollahasanoglu, HakkiA 2-D numerical finite-element model of a linear synchronous motor (LSM) is extended based on the magnetic field and moving mesh properties to investigate the magnetic flux and magnetic force characteristics of the high-speed electromagnetic levitation Maglev system, by using high-temperature superconductor (HTS) coils rather than lower current-carrying copper coils on the onboard unit and permanent magnets (PMs) on the ground. In this 2-D LSM model, the transient time-dependent solver is used to obtain the magnetic flux densities. Both the propulsion and levitation forces increased with increasing supercurrent J(c0) values indicating the advantage of using the superconducting windings in PM-LSM of Maglev vehicles as compared with the copper wires. It was also determined that, although the propulsion force is obtained on a comparable level with the studies in the literature, the lower levitation force issue than the electrodynamic suspension (EDS), despite the better propulsion to levitation force ratio, can be overcome by using the high flux trapping capacity bulk HTSs on the onboard unit together with the superconducting coils. The determined higher propulsion force in this PM-LSM Maglev model indicates that the Maglev vehicle can reach higher velocities in a short distance, and thus, this vehicle can be effectively used in short-distance travels in addition to the long-distance transportation. On the other hand, since the EDS system to be accelerated in a certain time interval via conventional wheels to achieve sufficient levitation, PM-LSM system can be integrated into the EDS Maglev system to ensure higher acceleration in a short time interval in addition to the higher levitation and propulsion force performances.Öğe Frozen image analysis of a superconducting magnetic levitation system consisting of multi-surface superconductor and Halbach array permanent magnet configuration(Elsevier Sci Ltd, 2021) Cansiz, Ahmet; Reisoglu, Ahmet F.; Ozturk, Kemal; Abdioglu, MuratLevitation strength provided by high temperature superconductors are limited for device applications. Although superconducting material properties are continuously improving, there is still strong necessity of efficient design mechanisms for the superconducting magnetic levitation systems. Studies in the last decades have shown that combining multi-surface superconductor and permanent magnet components in optimum configurations has improved the levitation forces. In this respect, Halbach arraying permanent magnets interacting with multisurface superconductors has become one of the most utilized methods. This paper investigates frozen image modeling of the levitation and guidance forces on a particular levitation system, which consists of a permanent magnet guideway and high temperature superconductor car body. The levitation enhancement is investigated for three configurations according to force interactions between the guideway and car body. These configurations are based on the use of single permanent magnet-single superconductor, Halbach array permanent magnetssingle superconductor and Halbach array permanent magnets-multi-surface superconductors. The vertical and guidance forces for the present configurations were calculated in terms of field cooling and zero field cooling conditions by using frozen image model with magnetic dipole approximation. The predicted force calculations are analyzed in terms of vertical and lateral traverses of the car body respect to guideway for particular measurement distances. The force analysis provided by frozen image model qualitatively agree with the previously obtained experimental data.Öğe Machine learning driven optimization and parameter selection of multi-surface HTS Maglev(Elsevier, 2024) Ozkat, Erkan Caner; Abdioglu, Murat; Ozturk, U. KemalThis research aims to tackle the challenges posed by precise force measurement for high temperature superconducting (HTS) Maglev systems, including mechanical constraints, step motor limitations, and sensor resolutions. For this aim, six machine learning (ML) models namely Support Vector Machine (SVM), Gaussian Process Regression (GPR), Extreme Gradient Boosting (XGB), Long Short-Term Memory (LSTM), Extreme Machine Learning (EML), and Convolutional Neural Network (CNN) were developed to predict levitation force (Fz) and lateral force (Fx) based on process parameters including permanent magnet width (PMW), field cooling height (FCH), the movement in the z-axis (vertical distance), and the movement in the x-axis (lateral distance). Among six ML models, CNN emerged as the most accurate model, demonstrating smaller root mean square deviation (RMSD) without compromising correlation coefficients. Furthermore, an innovative process window approach was introduced to select process parameters that simultaneously meet the minimum value of Fz and maximum value of Fx, named beta 1 and beta 2, set at 90 N and 0 N, respectively. Within this window, PMW of 30 mm and z values less than 10 mm were found to be consistent for all FCH and x values. The novelty of this study is to formulate the optimisation problem in HTS Maglev using the developed ML model by addressing two specific objectives one of which focuses on maximizing Fz while ensuring Fx remains within a defined tolerance (beta 3), representing the minimum allowable ratio of the levitation force to the total force, and the second problem aims to maximize Fz while obtaining zero Fx. The optimum PMW, FCH, x, and z values were obtained at 30 mm, 30 mm, 4 mm and 5 mm, corresponding to Fz and Fx values of 224.2 N and -53.8 N for option 1. As for option 2, the process parameters were obtained as 28.6 mm, 25.9 mm, 0 mm, and 5 mm, corresponding to Fz and Fx values of 194.2 N and 0 N. It was obtained both experimentally and by the optimization that Fz reaches close its maximum as the Fx gains attractive character. Hence, it is expected that the outcomes of this study will significantly benefit the design of HTS Maglev systems and find valuable applications across various transportation engineering projects.Öğe Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs(IEEE-Inst Electrical Electronics Engineers Inc, 2023) Ozturk, U. Kemal; Abdioglu, Murat; Mollahasanoglu, HakkiThe vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (Z(PM)) to Z(PM) = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and Z(PM) = 0 mm, indicates that the hybrid multisurface HTS-PMG arrangements are beneficial to increasing the practical applicability of Maglev systems.Öğe Magnetic levitation force and trapped field properties of multiseeded YBCO with triangular arrangement of seeds(Wiley, 2022) Abdioglu, Murat; Guner, Sait Baris; Ozturk, Kemal; Yang, Chiaming; Chen, Ingann; Celik, SukruAlthough there are studies in literature using different number of seeds with different arrangements, especially line and rectangular, it is seen that there is no detailed study handling the levitation force together with trapped field properties of triangular arrangement of seed in YBCO. Therefore, to further investigate the magnetic properties of seeded YBCO superconductors, we have fabricated cylindrical YBCO (YBa2Cu3O7) superconductors with triangular arrangement of the seeds with different seed distances. Maximum levitation force values were obtained as 39.4 N and 57.1 N, while the maximum guidance force values were obtained as -4.6 N, and -8.7 N, respectively, with single-seeded and triangular-seeded samples with seed distance of 14 mm. It was determined that the trapped field, levitation force, and guidance force firstly decreased from the single-seeded sample to the triangular-seeded sample with small seed distance and then increased with increasing seed distance. Increased field trapping and levitation force performances in the triangular-seeded samples with suitable seed distance indicate that the triangular arrangement of seeds is an eligible method to produce larger dimension YBCO samples with bigger shielding current radius and bigger averaged trapped field values.Öğe Magnetic levitation force performance of benzil added bulk MgTi0,06B2 superconductors(Elsevier Sci Ltd, 2021) Abdioglu, MuratMgB2 superconductors can be proposed as a good candidate for Maglev systems due to their superior structural and superconducting properties. Besides, magnetic levitation and guidance force properties of these superconductors should be increased for commercial applications of Maglev systems. Therefore, the critical current density and magnetic levitation and guidance force properties of MgTi0.06B2 superconducting samples were investigated in this study, at measurement temperatures of 20 K and 25 K, depending on benzil (C14H10O2) addition in different adding amounts of 0, 1.5, 3, 4.5, 6 and 9 wt%. In addition to benzil, nanometer-sized silver particles were added to the samples in a constant ratio of 2 wt% to enhance the structural properties. The maximum critical current density values increased from 67 kA/cm(2) for pure sample to 92 kA/cm(2) with benzil adding amount of 3 wt% at T = 20 K, indicating an increment of 37%. In addition, the levitation force in ZFC (zero field cooling) regime and the guidance force in FC (field cooling) regime at 20 K increased at an amount of 46% and 57%, respectively, with 3% benzil addition. It can be said that the suitable amount of benzil addition as a carbon source produces additional pinning centres inside the MgTi0.06B2 and thus structural properties, critical current density and therefore, magnetic levitation properties of the samples are increased.