Yazar "Alamoudi, Mohammed" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bioactive and technological properties of an ?-D-glucan synthesized by Weissella cibaria PDER21(Elsevier Sci Ltd, 2022) Yilmaz, Mustafa Tahsin; Ispirli, Humeyra; Taylan, Osman; Alamoudi, Mohammed; Dertli, EnesA slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 -> 6)-linked alpha-D-glucose units including (1 -> 3)-linked alpha-D-glucose branches at a ratio of 93.4/6.6 was revealed by H-1 and C-13 NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 degrees C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry.Öğe Optimization of asymmetric bioreduction conditions of 1-(thiophen-2-yl)ethanone by Weissella cibaria N9 using a desirability function-embedded face-centered optimization model(Taylor & Francis Inc, 2023) Bolubaid, Mohammed; Ozdemir, Akin; Dertli, Enes; Alamoudi, Mohammed; Taylan, Osman; Karaboga, Dervis; Yilmaz, Mustafa TahsinProchiral ketones can be effectively bio-reduced to chiral secondary alcohols by whole-cell biocatalysts, which are possible useful precursors to synthesize physiologically active chemicals and natural products. When whole-cell biocatalysts strains are used, bioreduction process can be influenced by various cultural factors, and it is vital to optimize these factors that affect selectivity, conversion rate, and yield. In this study, Weissella cibaria N9 was used as whole-cell biocatalyst for bioreduction of 1-(thiophen-2-yl)ethanone, and cultural design factors were optimized using a desirability function-embedded face-centered optimization model. For this, effects of pH (4.5-5.5-6.5, x(1)), (2) temperature (25-30-35 degrees C, x(2)), (3) incubation period (24-48-72 h, x(3)), and (4) agitation speed (100-150-200 rpm, x(4)) on two response variables; (1) ee (%) and (2) cr (%) were tested. Next, desirability function-embedded face-centered optimization model revealed that a pH of 6.43, a temperature of 26.04 degrees C, an incubation period of 52.41 h, and an agitation speed of 150 rpm were the optimum levels and the estimated ee and cr responses were 99.31% and 98.16%, respectively. Importantly, the actual experimental ee and cr responses were similar to the estimated values indicating the capability of the offered desirability function-embedded face-centered optimization model when using the optimum cultural conditions.Öğe Optimization of asymmetric bioreduction conditions of 1-indanone by Leuconostoc mesenteroides N6 using a face-centered design-based multi-objective optimization model(Taylor & Francis Inc, 2024) Alamoudi, Mohammed; Ozdemir, Akin; Dertli, Enes; Bolubaid, Mohammed; Alidrisi, Hassan M.; Taylan, Osman; Yilmaz, Mustafa TahsinThere has been an increasing interest in biocatalysts over the past few decades in order to obtain high efficiency, high yield, and environmentally benign procedures aiming at the manufacture of pharmacologically relevant chemicals. Lactic Acid Bacteria (LAB), a microbial group, can be employed as biocatalysts while performing asymmetric reduction of prochiral ketones. In this study, Leuconostoc mesenteroides N6 was used for the asymmetric bioreduction 1-indanone. And then, a novel and innovative face-centered design-based multi-objective optimization model was used to optimize experimental conditions. Also, the experimental design factors were defined as agitation speed, incubation period, pH, and temperature for optimization to acquire the maximum enantiomeric excess (ee) and conversion rate (cr) values. When using the face-centered design-based multi-objective optimization model, the optimum culture conditions corresponded to 96.34 and 99.42%, ee and cr responses, respectively, were pH = 5.87, incubation temperature = 35 degrees C, incubation period = 50.88 h, and agitation speed = 152.60 rpm. Notably, the validation experiment under the optimum model conditions confirmed the model results. This study demonstrated the importance of the optimization and the efficiency of the face-centered design-based multi-objective model.