Yazar "Alfaqawi, Mona S. S." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Extraction Method for Unique Determination of Complex Permittivity From Graphical Analysis of Natural Frequencies(IEEE-Inst Electrical Electronics Engineers Inc, 2023) Hasar, Ugur C.; Ozturk, Gokhan; Kaya, Yunus; Alfaqawi, Mona S. S.; Barroso, Joaquim Jose; Ertugrul, Mehmet; Ramahi, Omar M.A time-domain free-space extraction procedure is proposed to uniquely determine the relative complex permittivity epsilon(r)(omega) based on two sets of natural frequencies of the metal- and air-backed dielectric samples. A graphical analysis is applied for evaluating whether unique epsilon(r)(omega) can be extracted using such natural frequencies. The method is numerically validated using two dielectric samples with different epsilon(omega) for the ideal case (no noise) and under the influence of noise with different signal-to-noise ratios (SNRs).Öğe Temporal Reflection Response of Plane Waves Within an N-Layer Structure Involving Bianisotropy(IEEE-Inst Electrical Electronics Engineers Inc, 2023) Hasar, Ugur C.; Ozturk, Gokhan; Kaya, Yunus; Barroso, Joaquim Jose; Ertugrul, Mehmet; Ramahi, Omar M.; Alfaqawi, Mona S. S.The temporal reflection response of an N-layer composite structure involving bianisotropic behavior is examined for the first time in the literature. Toward this goal, the wave matrix (WM) method, which is fundamental, relatively easier to apply, and compact and iterative suitable for analysis of multilayer structures, is first extended to the analysis of an interface separating two different media involving bianisotropy. Next, the reflection response of the whole structure is derived in terms of series form to better analyze its temporal behavior. Then, frequency-domain and time-domain responses of the whole structure are expressed using a special reflection coefficient (the reduced reflection coefficient) by way of the concept of subregions. A numerical analysis is performed to demonstrate the applicability of our formalism for two different polarization types (perpendicular and parallel).