Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Alisoy G." seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Existence of one weak solution for p(X)-biharmonic equations involving a concave-convex nonlinearity
    (Drustvo Matematicara Srbije, 2017) Mashiyev R.A.; Alisoy G.; Ekincioglu I.
    In the present paper, using variational approach and the theory of the variable exponent Lebesgue spaces, the existence of nontrivial weak solutions to a fourth order elliptic equation involving a p(x)-biharmonic operator and a concave-convex nonlinearity the Navier boundary conditions is obtained. © 2017, Drustvo Matematicara Srbije. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Infinitely many solutions for a class of stationary Schrödinger equations with non-standard growth
    (Taylor and Francis Ltd., 2018) Ayazoglu (Mashiyev) R.; Alisoy G.
    In this paper, we study the existence of infinitely many solutions for a class of stationary Schrödinger type equations in ?N involving the p(x)-Laplacian. The non-linearity is superlinear but does not satisfy the Ambrosetti-Rabinowitz type condition. The main arguments are based on the geometry supplied by Fountain Theorem. We also establish a Bartsch type compact embedding theorem for variable exponent spaces. © 2017 Informa UK Limited, trading as Taylor & Francis Group.
  • Küçük Resim Yok
    Öğe
    Multiple small solutions for p(x)-Schrödinger equations with local sublinear nonlinearities via genus theory
    (University of Szeged, 2017) Ayazoglu Mashiyev R.; Ekincioglu I.; Alisoy G.
    In this paper, we deal with the following p(x)-Schrödinger problem: (Formula Presented) where the nonlinearity is sublinear. We present the existence of infinitely many solutions for the problem. The main tool used here is a variational method and Krasnoselskii’s genus theory combined with the theory of variable exponent Sobolev spaces. We also establish a Bartsch-Wang type compact embedding theorem for the variable exponent spaces. © 2017, University of Szeged. All rights reserved.

| Bayburt Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bayburt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Bayburt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim