Yazar "Bennett, Mark" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Discovery of a bacterial glycoside hydrolase family 3 (GH3) #-glucosidase with myrosinase activity from a Citrobacter strain isolated from soil(2016) Albaser, Abdulhadi; Kazana, Eleanna; Bennett, Mark; Cebeci, Fatma; Luang-In, Vijitra; Spanu, Pietro D.; Rossiter, John T.A Citrobacter strain (WYE1) was isolated from a UK soil by enrichment using the glucosinolate sinigrin as sole carbon source. The enzyme myrosinase was purified using a combination of ion exchange and gel filtration to give a pure protein of approximately 66 kDa. The N-terminal amino acid and internal peptide sequence of the purified protein were determined and used to identify the gene, which, based on InterPro sequence analysis, belongs to the family GH3, contains a signal peptide, and is a periplasmic protein with a predicted molecular mass of 71.8 kDa. A preliminary characterization was carried out using protein extracts from cell-free preparations. The apparent KM and Vmax were 0.46 mM and 4.91 mmol dm(-3) min(-1) mg(-1), respectively, with sinigrin as substrate. The optimum temperature and pH for enzyme activity were 25 °C and 6.0, respectively. The enzyme was marginally activated with ascorbate by a factor of 1.67.Öğe Identification of Proteins Possibly Involved in Glucosinolate Metabolism in L. agilis R16 and E. coli VL8(2015) Luang-In, Vijitra; Narbad, Arjan; Cebeci, Fatma; Bennett, Mark; Rossiter, John T.This study was aimed to identify sinigrin-induced bacterial proteins potentially involved in the metabolism of glucosinolate in two glucosinolate-metabolising bacteria Lactobacillus agilis R16 and Escherichia coli VL8. Sinigrin (2 mM) was used to induce the proteins in both bacteria under anaerobic incubation for 8 h at 30 C for L. agilis R16 and 37 C for E. coli VL8 and the controls without sinigrin were performed. Allyl isothiocyanate and allyl nitrile as two degradation products of sinigrin were detected in sinigrin-induced cultures of L. agilis R16 (27 % total products) and E. coli VL8 (38 % total products) from a complete sinigrin degradation in 8 h for both bacteria. 2D gel electrophoresis was conducted to identify induced proteins with at least twofold increased abundance. Sinigrin-induced L. agilis R16 and the control produced 1561 and 1543 protein spots, respectively. For E. coli VL8, 1363 spots were detected in sinigrin-induced and 1354 spots in the control. A combination of distinct proteins and upregulated proteins of 32 and 35 spots in L. agilis R16 and E. coli VL8, respectively were detected upon sinigrin induction. Of these, 12 and 16 spots from each bacterium respectively were identified by LC–MS/MS. In both bacteria most of the identified proteins are involved in carbohydrate metabolism, oxidoreduction system and sugar transport while the minority belong to purine metabolism, hydrolysis, and proteolysis. This indicated that sinigrin induction led to the expressions of proteins with similar functions in both bacteria and these proteins may play a role in bacterial glucosinolate metabolism.