Yazar "Bozkurt F." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Electrospraying method for fabrication of essential oil loaded-chitosan nanoparticle delivery systems characterized by molecular, thermal, morphological and antifungal properties(Elsevier Ltd, 2019) Yilmaz M.T.; Yilmaz A.; Akman P.K.; Bozkurt F.; Dertli E.; Basahel A.; Al-Sasi B.; Taylan O.; Sagdic O.Fabrication of essential oil loaded-chitosan nanoparticles using electrospraying technique appears to be a novel strategy to develop thermally stable nanoparticles possessing higher encapsulation efficiency and particle stability. This study aims to fabricate chitosan nanoparticles (CNPs) loaded with Origanum vulgare essential oil (OEO, Origanum vulgare L.) at different proportions (OEO/CH proportions of 0:1, 0.0625:1, 0.125:1, 0.25:1 and 0.5:1 mL/g) using electrospraying technique. The CNPs were characterized in term of their particle size and stability (dynamic light scattering), encapsulation efficiency (spectrophotometry), and molecular (Fourier transform infrared spectroscopy), thermal (differential scanning calorimetry/thermogravimetric analysis), morphological (scanning electron microscopy) and antifungal (agar dilution method) and fungistatic activity properties. The average particle sizes of the CNPs ranged between 290 and 483 nm with a spherical morphology. Positively charged surface characteristics were observed to increase with the increment of OEO concentration in CNPs. The encapsulation efficiency values were determined in the range of 70.1 and 79.6%. The molecular and thermal analyses exposed very decent encapsulation of OEO into thermally stable chitosan nanoparticles. Morphological analysis verified the spherical shapes of these nanoparticles. Above all, the antifungal effectiveness of OEO against the Alternaria alternata AY1 could be significantly (p < 0.05) increased by its encapsulation into chitosan nanoparticles fabricated by the electrospraying technique. Consequently, it can be stated that the electrospraying technique developed is able to fabricate thermally stable nanoparticles owning higher encapsulation efficiency and particle stability. The results and findings suggest that the electrospraying technique would be a promising method to fabricate chitosan-based nanoparticles as an antimicrobial agent to control their release in a prolonged preservative effect in cosmetic, pharmaceutical and food applications for adjustable dosage forms. Industrial relevance: The fungal agents such as Alternaria alternata cause great damages on post-harvest fresh fruits and vegetables, thus leading to a great economical lose. Therefore, a great variety of methods in struggling with disease have been previously proposed. Nowadays, the most effective leading methods to struggle against plant diseases are those applied with synthetic fungicides to minimize such lose in post-harvest fruit and vegetables. However, intensive and unconscious use of the fungicides leads the pathogens to develop resistance against these agents as well as to accumulation of chemical residues in soil, water and air and finally to formation of carcinogenic effects on human health. Nowadays, a great effort is being exerted to develop novel biodegradable and natural antimicrobial agents for struggling fungal spoilage in postharvest products. Essential oils are among the most widely used natural struggling methods. Essential oils obtained from plants have been extensively used since they are natural antimicrobial agents. However, they cannot be effectively used in spite of their extensive applications. Recently, some researches in the field of nanotechnology have demonstrated that the effectiveness of active substances could be increased by using some techniques. In this respect, we aimed at developing essential-oil-loaded-chitosan-nanoparticle delivery systems using an electrospraying deposition system to prevent fungal colonization on food and plant materials. By increasing antifungal effectiveness of essential oils by their encapsulation into nanoparticles, it will be possible to decrease the levels of regularly applied dose and reflect the obtained outcomes to the food and agriculture industry. This study is the first example of production of essential oil loaded nanoparticles using the electrospraying-hydrodynamic process and showed that encapsulation of oregano essential oil into chitosan based nanoparticles (CNPs) by using the electrospraying deposition technique considerably increased the antifungal effectiveness of the Origanum vulgare essential oil. Our results highlight the potential use of the chitosan nanoparticles (CNPs) loaded with different amounts of Origanum vulgare in food and agriculture industry as an effective fungicidal material against Alternaria alternata, suggesting that the CNPs can be promising tools to compete with synthetic fungicide counterparts and limit use of synthetic ones for struggling of food and plant pathogens. Therefore, the results of this study should be of great importance to industrial applications in terms of development of natural, but effective preservatives as alternative to synthetic ones. In this respect, the CNPs would find a great industrial application area in the food and agriculture industry which seek natural preservatives due to the recent health concerns. © 2018Öğe A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin(Elsevier Ltd, 2016) Yilmaz A.; Bozkurt F.; Cicek P.K.; Dertli E.; Durak M.Z.; Yilmaz M.T.Coating surfaces of fruit with electrospun zein mats with functionalized antimicrobial properties can be a novel strategy to prevent fungal colonization on fruit surfaces. In this study, we tested curcumin-loaded electrospun zein nanofibers (CLZN) in terms of limitation of postharvest decay on CLZN–coated apples infected with Botrytis cinerea and Penicillium expansum. Mixtures of zein and curcumin (the curcumin amounts of 2.5 and 5 wt% based on the weight of zein powder) were electrospun to yield cylindrical and ultrafine (< 350 nm in diameter) polymeric nanofibers. In addition, molecular, thermal, zeta potential and morphological properties of the CLZN as well as their encapsulation efficiency and releasing kinetics were determined, revealing that the developed zein-based scaffolds showed high encapsulation efficiency, molecular interactions with curcumin within nanofibers, alterations in physical states of these components, smooth beadless structure and good thermal (an endothermic peak at 152 °C) and dispersion stability (? 24 mV of ? potential) properties. In vitro antifungal activity tests conducted at 27 °C for six days showed that CLZN were effective against growth of the tested fungal pathogens, exhibiting almost 40–50% inhibition of mycelial growth of the fungal pathogens; but the antifungal effect against P. expansum was but two-fold higher than that against B. cinerea. In vivo tests conducted at 23 °C with 75% humidity for six days confirmed in vitro test results in terms of both visual inspections on uncoated and coated apples, revealing almost 50% reduction in lesion diameter measured on coated apples infected with Penicillium expansum. Our results suggest that CLZN mats open up new opportunities for a novel application of edible and biodegradable antifungal coating material with the ability to hinder fungal proliferation on coated apples during storage period. Industrial relevance We coated the surfaces of fruits with electrospun mats with functionalized antimicrobial properties to prevent fungal colonization on fruit surface. The coating of apples with curcumin-loaded zein nanoparticles (CLZNs) limited the postharvest decay caused by the fungal pathogens, Penicillium expansum and Botrytis cinerea. This study showed that by encapsulation of curcumin into zein-based nanofibers considerably increased the antifungal effectiveness of curcumin. Our results highlighted the potential use of the CLZN as an effective fungicidal coating material against P. expansum and B. cinerea and suggested that CLZNs can be promising tools to compete with synthetic fungicide counterparts of curcumin. The results of this study should be of great importance to industrial applications in terms of development of natural, but effective preservatives as alternative to synthetic ones. © 2016 Elsevier LtdÖğe Optimization of pectin extraction from orange pulp and characterization of compositional and steady shear properties(Namik Kemal University - Agricultural Faculty, 2017) Yilmaz M.T.; Muslu A.; Karasu S.; Bozkurt F.; Dertli E.Pectin, which is one of the most important wastes of fruit juice industry, was extracted from orange pulp at optimum conditions (pH, time and temperature) and modified using pectinase. The effect of modification on the structural properties of pectin was monitored using Fourier transformed infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) analyses. The bands at 1600-1800 cm-1 which indicate the specific region and quality of pectin were detected using FTIR while galacturonic acid content was determined using HPLC. The results showed that the galacturonic acid content of pectin from orange pulp was determined to be 406.44 mg/g powder pectin while that of the modified pectin from the orange pulp was determined to be 465,34 mg/g powder pectin. In addition, flow properties of the pectin samples were determined using rheological analysis. The viscosity and viscoelastic properties of the modified pectin samples were revealed to be different from those of non-modified pectin samples. The consistency index values of unmodified and modified pectin samples were determined to be 0.0559 Pa.sn and 0.0046 Pa.sn, respectively. © 2017 Namik Kemal University - Agricultural Faculty. All Rights Reserved.