Yazar "Can, Kaan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Design, Simulation and Comparison of Controllers for Temperature Profile Tracking Control of a Heat Flow System(2020) Can, Kaan; Sekban, Hayriye Tuğba; Orman, Kamıl; Başçi, AbdullahIn this paper, the design, simulation and performance comparison of the three different controllers applied to the heat flow system (HFS) are presented. First, the dynamic model of the HFS was obtained and so as to test the temperature control, sliding mode controller (SMC), adaptive sliding mode controller (ASMC) and adaptive fractional order sliding mode controller (AFOSMC) are designed and applied. To analyse the performance of the designed controllers a simulation environment is developed via the Matlab/Simulink software. The results, obtained through a simulation environment are represented by tracking error, adaptation gain, response to sudden changes, maximum overshoot, rise time and settling time and they showed that the heat flow system follows the reference temperature profile trajectory with less errors, overshoot, rise time and settling time by using the AFOSMC than the other controllers. Also, the maximum errors, rise time and settling time occurred when the sliding mode controller is used.Öğe Model-Based Dynamic Fractional-Order Sliding Mode Controller Design for Performance Analysis and Control of a Coupled Tank Liquid-Level System(Univ Suceava, Fac Electrical Eng, 2020) Sekban, Hayriye Tugba; Can, Kaan; Basci, AbdullahIn this paper, a model-based dynamic fractional-order sliding mode controller (FOSMC) is designed and implemented to a coupled tank experimental setup for controlling the liquid level. First, a model-based dynamic sliding-mode controller is designed by using the dynamic equations of a vertically positioned coupled tank system. Then, the sliding surface of the sliding-mode controller is defined in fractional order so that the designed controller can make better water level tracking. The liquid level control of the system is realized in two different steps. In the first step, the water level of the upper tank is controlled by a pump and in this application the bottom tank is not considered. In the second step, the water level of the bottom tank is controlled with upper tank's output water. In addition, a model-based dynamic sliding mode controller (SMC) is also applied to the system to show the performance of the proposed controller in terms of robustness to disturbances, reference tracking and error elimination capability. Experimental results show that the proposed controller reduces the reference tracking error by 3.68% and 10.17% for the upper tank and 17.07% for the, bottom tank when compared to the SMC, and the control signal contains more chattering than the SMC.