Yazar "Celik S." seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparative study of the magnetic stiffness, levitation and guidance force properties of single and multi seeded YBCOs for different HTS-PMG arrangements(Elsevier Ltd, 2015) Ozturk K.; Sahin E.; Abdioglu M.; Kabaer M.; Celik S.; Yanmaz E.; Kucukomeroglu T.Abstract It is crucial to improve the magnetic levitation, guidance and stiffness performances of the HTS Maglev systems for real-scale applications. In this study, the magnetic levitation force, guidance force and magnetic stiffness values were determined for single and multi-seeded YBCOs on different PMGs in ZFC regime and different cooling heights (CHs) after the magnetic flux distributions simulation of the using PMGs. Implemented study showed that the additional downward PMs make an enhancing contribution on the magnetic levitation force, guidance force and magnetic stiffness of both single and multi-seeded YBCOs. It was also determined that both the force and stiffness ratios of multi-seeded YBCO to single-seeded YBCO increase with increasing CH, indicating that the multi-seeded YBCO has much more interaction domain than single-seeded at higher gaps. It is considered that the results obtained in this study are very useful in technological applications of Maglev and bearing systems, because there is no detailed study on the magnetic stiffness, levitation and guidance force comparison to clarify electromagnetic behavior of single and multi-seeded YBCOs for different HTS-PMG arrangements. © 2015 Elsevier B.V.Öğe The effect of magnetic field distribution and pole array on the vertical levitation force properties of HTS Maglev systems(Institute of Electrical and Electronics Engineers Inc., 2015) Ozturk K.; Abdioglu M.; Sahin E.; Celik S.; Gedikli H.; Savaskan B.In this paper, the levitation force measurements have been carried out by the magnetic force measurement system under both field-cooling and zero-field-cooling regimes, whereas the magnetic field distribution over the permanent-magnet guideway (PMG) was calculated by numerical analysis based on the finite-element method. It was shown in this study that the vertical levitation capability and stability of Maglev systems can be improved depending on the cooling regime, pole number, and suitable arrangement of the PMG. In this paper, it was shown that when the pole number increases, the levitation force density increases. It also appeared that the reasonable position of the supplementary permanent magnet and appropriate cooling heights are key parameters for both levitation performance and stabilization of the high-temperature superconductor (HTS) Maglev. It is believed that the numerical and experimental data in this paper are useful for relative design and practical application of HTS Maglev systems. © 2015 IEEE.Öğe Effects of initial cooling conditions and measurement heights on the levitation performance of bulk MgB2 superconductor at different measurement temperatures(Springer New York LLC, 2014) Erdem O.; Ozturk K.; Guner S.B.; Celik S.; Yanmaz E.The levitation properties of MgB2 prepared by hot press at 200 ° C and then pellet/closed tube method has been investigated. The vertical and lateral levitation forces (Fz and Fx) on a cylindrical NdFeB permanent magnet (PM) below a disk-shaped bulk MgB2 were measured during the vertical and lateral traverses of the PM in different cooling heights (CHs) and measurement heights (MHs) at temperatures of 20, 25 and 30 K to investigate the effect of the initial CH and MH on the levitation performance of MgB2. For temperatures below 30 K, it was observed that Fz increases with increasing CH. However, a minute variation in Fz and a big hysteresis loop are observed at 30 K. From the lateral traverses, it was obtained that the Fz with attractive character increases with decreasing MH and the hysteresis effect increases for small MHs due to the increment of the magnetic field intensity which the sample feels with decreasing MH. In addition, it was seen that the character of Fx varies depending on both MH and measurement temperature. The higher hysteresis obtained in Fx than in Fz during lateral traverses implies that the motion of the flux lines in MgB2 is especially in lateral rather than vertical direction. Finally in this study, it was shown that the levitation performance of MgB2 depends not only on the measurement temperature but also on the CH and MH conditions. These results can be useful for optimizing the levitation performance of MgB2 superconductors for potential applications. © 2014 Springer Science+Business Media New York.Öğe Improvement in levitation force performance of bulk MgB2 superconductors through coronene powder adding(Elsevier Ltd, 2017) Erdem O.; Abdioglu M.; Guner S.B.; Celik S.; Kucukomeroglu T.The effect of coronene (C24H12) addition on the levitation force properties of MgB2 superconductor has been investigated for the first time in this study. The polycrystalline disk-shaped MgB2 + y wt % C24H12 samples (y = 0, 2, 4, 6, 8, 10), were synthesized by a pellet/closed tube method at 850 °C under Ar atmosphere, after hot pressing at 200 °C. XRD analysis indicates a decrease in lattice parameters of coronene added samples and confirms substitution of carbon in boron sites. An increase in lattice strain and a decrease in grain size are observed due to the carbon substitution effect. Vertical and lateral levitation force measurements under zero-field-cooled and field-cooled regimes were carried out at different temperatures of 20, 25 and 30 K. It was found that the coronene addition significantly increases the high-field critical current density of MgB2. The Jc values were obtained as 4.6 × 103 Acm?2 and 1.3 × 104 Acm?2 for pure and 4 wt % coronene added samples at 20 K and 4 T. In addition, the levitation force measurements show that 4 wt % coronene adding is very effective in increasing both the vertical and lateral levitation force performances at 20 K. The maximum levitation force for 4 wt % coronene added sample corresponds to 7.58 N/g whereas the reference sample shows 6.73 N/g at 20 K in ZFC regime. The results point out that the hydrocarbon of C24H12 is an effective carbon-containing additive for MgB2 and can be useful for optimizing the levitation performance of MgB2 superconductors for potential applications. © 2017 Elsevier B.V.Öğe Lateral Position Effect of Auxiliary Permanent Magnets on the Magnetic Force Properties of Cylindrical YBCO(Springer New York LLC, 2017) Abdioglu M.; Kabaer M.; Ozturk K.; Erdem O.; Celik S.The magnetic levitation force (MLF) and the guidance force (GF) should be improved for loading capacity and stability of Maglev systems, respectively. Although there are some ways to increase these properties, using of auxiliary onboard permanent magnets (PMs) can be considered as the most efficient one. The auxiliary PMs increase the MLF significantly but, at the same time, decrease the GF. We have searched a solution to overcome this problem in this study. Firstly, we have determined the optimum vertical positions of the auxiliary PMs and then we have investigated the vertical levitation force and lateral guidance force of hybrid Maglev system depending on lateral position of auxiliary PMs in different cooling heights (CHs). A cylindrical YBCO superconductor, fabricated by a top seeding method with the diameter of 45 mm and the height of 15 mm, was used as a high-temperature superconductor (HTS). The maximum increment rate in MLF and the minimum decrement rate in GF were observed as 277 and 54 %, respectively. The increment in MLF was obtained five times more than the decrement in GF, and this reality points out that the results of this study can be useful for improving the loading capacity and thus enhancing the practical applicability of Maglev systems. © 2016, Springer Science+Business Media New York.