Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Clarke T." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Practical implementation and stability analysis of ALOHA-Q for wireless sensor networks
    (ETRI, 2016) Kosunalp S.; Mitchell P.D.; Grace D.; Clarke T.
    This paper presents the description, practical implementation, and stability analysis of a recently proposed, energy-efficient, medium access control protocol for wireless sensor networks, ALOHA-Q, which employs a reinforcement-learning framework as an intelligent transmission strategy. The channel performance is evaluated through a simulation and experiments conducted using a real-world test-bed. The stability of the system against possible changes in the environment and changing channel conditions is studied with a discussion on the resilience level of the system. A Markov model is derived to represent the system behavior and estimate the time in which the system loses its operation. A novel scheme is also proposed to protect the lifetime of the system when the environment and channel conditions do not sufficiently maintain the system operation. © 2016 ETRI.
  • Küçük Resim Yok
    Öğe
    Use of Q-learning approaches for practical medium access control in wireless sensor networks
    (Elsevier Ltd, 2016) Kosunalp S.; Chu Y.; Mitchell P.D.; Grace D.; Clarke T.
    This paper studies the potential of a novel approach to ensure more efficient and intelligent assignment of capacity through medium access control (MAC) in practical wireless sensor networks. Q-Learning is employed as an intelligent transmission strategy. We review the existing MAC protocols in the context of Q-learning. A recently-proposed, ALOHA and Q-Learning based MAC scheme, ALOHA-Q, is considered which improves the channel performance significantly with a key benefit of simplicity. Practical implementation issues of ALOHA-Q are studied. We demonstrate the performance of the ALOHA-Q through extensive simulations and evaluations in various testbeds. A new exploration/exploitation method is proposed to strengthen the merits of the ALOHA-Q against dynamic the channel and environment conditions. © 2016 Elsevier Ltd

| Bayburt Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bayburt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Bayburt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim