Yazar "Daloglu A.T." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms(Hindawi Limited, 2018) Daloglu A.T.; Artar M.; Ozgan K.; Karakas A.I.Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS) and teaching-learning-based optimization (TLBO) algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped bracing types are considered in the study. Optimum solutions of examples are carried out by a computer program coded in MATLAB interacting with SAP2000-OAPI for two-way data exchange. The stress constraints according to AISC-ASD (American Institute of Steel Construction-Allowable Stress Design), maximum lateral displacement constraints, interstorey drift constraints, and beam-to-column connection constraints are taken into consideration in the optimum design process. The parameters of the foundation model are calculated depending on soil surface displacements by using an iterative approach. The results obtained in the study show that bracing types and soil-structure interaction play very important roles in the optimum design of steel space frames. Finally, the techniques used in the optimum design seem to be quite suitable for practical applications. © 2018 Ayse T. Daloglu et al.Öğe Optimum design of steel bridges including corrosion effect using TLBO(Techno Press, 2017) Artar M.; Catar R.; Daloglu A.T.This study presents optimum design of plane steel bridges considering corrosion effect by using teaching-learning based optimization (TLBO) method. Optimum solutions of three different bridge problems are linearly carried out including and excluding corrosion effect. The member cross sections are selected from a pre-specified list of 128 W profiles taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB to carry out optimum design interacting with SAP2000 using OAPI (Open Application Programming Interface). The stress constraints are incorporated as indicated in AISC Allowable Stress Design (ASD) specifications and also displacement constraints are applied in optimum design. The results obtained from analysis show that the corrosion effect on steel profile surfaces causes a crucial increase on the minimum steel weight of bridges. Moreover, the results show that the method proposed is applicable and robust to reach the destination even for complex problems. Copyright © 2017 Techno-Press, Ltd.Öğe Optimum design of steel space frames including soil-structure interaction(Springer Verlag, 2016) Daloglu A.T.; Artar M.; Özgan K.; Karakas A.İ.The effect of soil-structure interaction on the optimum design of steel space frames is investigated using metaheuristic algorithms. Three-parameter elastic foundation model is used to incorporate soil-structure interaction. A computer program is developed in MATLAB interacting with SAP2000-OAPI for two way data flow in all optimization procedures. Optimum design of space frames is formulated according to LRFD-AISC (Load and Resistance Factor Design, American Institute of Steel Construction) specifications. The parameters of foundation model are obtained by using soil surface displacements. It is concluded that consideration of soil-structure interaction ends up with heavier frames, and method is applicable for practical purposes. © 2016, Springer-Verlag Berlin Heidelberg.