Yazar "Dilek, Durukan Burak" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparing of the Magnetic Force Parameters of Superconducting Maglev System Using Horizontal and Vertical PMG Geometry in Multi-Surface HTS-PMG Arrangement(Springer, 2021) Ozturk, Kemal; Savaskan, Burcu; Abdioglu, Murat; Cansiz, Ahmet; Dilek, Durukan Burak; Karaahmet, ZekeriyaIn this study, a detailed static and dynamic experimental studies were carried out in different cooling heights (CH) by using two different multi-surface HTS-PMG arrangements with horizontal (MS-H) and vertical (MS-V) geometries to determine the optimum magnetic force, static stiffness, dynamic response, and dynamic stiffness parameters of superconducting Maglev system. The maximum levitation force values (in CH = 25 mm) were obtained as 202 N and 84 N, respectively, with horizontal and vertical geometry HTS-PMG arrangements, while the maximum guidance force values (in CH = 5 mm) were obtained as -58 N and -22 N, respectively. Also, the vertical static (in CH = 25 mm) and dynamic stiffness (in CH = 5 mm) values were determined as 33.8 N/mm and 37.8 N/mm, respectively, for MS-H and 12.3 N/mm and 25.1 N/mm, respectively, for MS-V arrangements. The bigger levitation force, guidance force, and both static and dynamic magnetic stiffness values of MS-H arrangement with horizontal geometry than that of MS-V arrangement with vertical geometry indicate that the horizontal HTS-PMG geometry is more suitable for practical Maglev applications in terms of loading capacity and movement stability.Öğe Experimental and Numerical Investigation of Levitation Force Parameters of Novel Multisurface Halbach HTS-PMG Arrangement for Superconducting Maglev System(IEEE-Inst Electrical Electronics Engineers Inc, 2021) Ozturk, Kemal; Badia-Majos, Antonio; Abdioglu, Murat; Dilek, Durukan Burak; Gedikli, HasanWe have designed multisurface Halbach high temperature superconductor-permanent magnetic guideway (HTS-PMG) arrangements for magnetically levitated transportation (Maglev) and investigated the static force parameters in addition to the dynamic response characteristics. Three different Halbach HTS-PMG arrangements were used with multisurface (6 HTS, 4 HTS) and single surface (2 HTS) configurations and static and dynamic measurements were carried out in three different field cooling heights (FCHs). The bigger vertical loading capacity and wider loading gap were obtained with multisurface Halbach HTS-PMG arrangements. In addition, nearly four times bigger guidance force values of multisurface arrangements than that of single surface one indicates that the side HTSs in multisurface arrangements make a significant contribution to the guidance force and thus lateral movement stability ofMaglev systems. Both the vertical and lateral dynamic stiffness values increased with decreasing FCH and it can be also said that the dynamic stiffness properties of Maglev systems can be enhanced especially in lateral direction by using the multisurface Halbach HTS-PMG arrangements. Understanding of these experimental observations is supported by dedicated theoretical modelling through a 2-D approximation of the system. We show that by using a single material parameter (the critical current density J(c)) for the whole superconducting set, one may satisfactorily predict the complete series of experiments. The static and dynamic parameters obtained from this study and the results of dedicated theoretical modeling for single-surface and multisurface HTS-PMG arrangements are thought to be helpful for the researchers working on static and dynamic performances of HTS Maglev systems.