Yazar "Dispinar, Derya" seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Characterisation of aluminum alloys by octopus fluidity test(Gazi Univ, 2024) Erzi, Eray; Yuksel, Caglar; Gursoy, Ozen; Colak, Murat; Dispinar, DeryaAim Determination of fluidity and tensile property characteristics of A206, A201 and A380 alloy with new octopus design Design & Methodology Melting and casting of alloys into sand moulds. Measurement of fluidity length and tensile properties Originality New fluidity test mould design where different cross section thicknesses are used to characterise the alloy properties Findings A356 has the lowest fluidity. A201 has lower fluidity compare to A206 but has the highest strength. A380 has similar characteristics with A201 Conclusion A380 can be an alternative choise for A201 alloy Declaration of Ethical Standards The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.Öğe Characterization of properties of Vanadium, Boron and Strontium addition on HPDC of A360 alloy(Elsevier Science Sa, 2021) Gursoy, Ozen; Colak, Murat; Tur, Kazim; Dispinar, DeryaThe demand for lighter weight decreased thickness and higher strength has become the focal point in the automotive industry. In order to meet such requirements, the addition of several alloying elements has been started to be investigated. In this work, the additions of V, B, and Sr on feedability and tensile properties of A360 has been studied. A mold design that consisted of test bars has been produced. Initially, a simulation was carried out to optimize the runners, filling, and solidification parameters. Following the tests, it was found that V addition revealed the highest UTS but low elongation at fracture, while B addition exhibited visa verse. On the other hand, impact energy was higher with B additions.Öğe Determination of Acceptable Quality Limit for Casting of A356 Aluminium Alloy: Supplier's Quality Index (SQI)(Mdpi, 2019) Erzi, Eray; Gursoy, Ozen; Yuksel, Caglar; Colak, Murat; Dispinar, DeryaAluminium and its alloys have been widely used in the automotive industry for some time and A356 is one of the most popular aluminium alloys today in the sector. It contains approximately 7 wt.% Si and 0.3 wt.% Mg. Due to the defects that may be present in the cast parts, expected mechanical properties may not be reached and this alloy may perform in service under its potential. In a low pressure die casting, several precautions have to be taken in order to produce high quality and defect-free castings. Temperature of casting and the schemical composition of the melt is recorded continuously. Die temperature, pressure levels and their durations are optimized; degassing and fluxing operations are performed. Yet, regardless of the precautions, there could still be rejected parts. It is becoming clear that a good quality raw material is one of the most underrated points of the industry and that the starting material has a great effect on the final product and it should be taken in to account more seriously. Therefore, regarding the first rule of Campbell's 10 Rules of Casting, in this study, the quality of the starting material of supply chains for a wheel manufacturer was investigated. Chemical compositions were compared, fluidity tests, mechanical tests and bifilm indexes of these various sources and ingots were measured and a final quality index was proposed to create a reference for the quantification of quality of supplier's ingots. This new index was compared with the rejection rates.Öğe Evaluation of Fe Content on the Fluidity of A356 Aluminum Alloy by New Fluidity Index(Springer Int Publ Ag, 2024) Durmus, Melek; Dispinar, Derya; Gavgali, Mehmet; Uslu, Emin; Colak, MuratElements that are deliberately added to aluminum alloys or are incorporated into the alloy later depending on the production process affect the final product properties. In addition, liquid metal cleaning is important in minimizing undesirable elements. Considering the production process, one of the most harmful impurities that is likely to pass into the alloy via diffusion for aluminum is the element, Fe. It is known that this is due to the fact that although Fe is highly soluble in liquid aluminum and its alloys, it has very little solubility in solids. Depending on the Fe content, mechanical properties, porosity and fluidity properties are affected in aluminum alloys. In this study, stainless and carbon steel rods were dipped into the melt at 700 degrees C and 750 degrees C for 1, 2 and 5 h. Castings were performed before and after degassing. Four-channel fluidity mold with different section thickness was used in the trials. Additionally, microstructure characterization was performed under varying casting conditions. Fluidity Index was proposed which is a single value measured from all fluidity values in different sections. When the results were examined, it was determined that the diffusion material, holding time, casting temperature and liquid metal cleanliness had an effect on the fluidity. Due to the increase in diffusion time, a decrease in fluidity was observed in both carbon steel and stainless steel. It was found that fluidity was significantly reduced when using stainless steel.Öğe The influence of metallostatic pressure, grain refiner, and modification on the critical solid fraction (CSF) of cast A380 alloy(Academic Publication Council, 2021) Colak, Murat; Dispinar, DeryaIn this work, porosity formation with regard to the change in the metallostatic pressure was investigated. Different geometry was generated to simulate the effect of pressure on critical solid fraction. A380 alloy was sand cast. Additionally, the effect of grain refiner and modifiers was also investigated. Samples were subjected to X-ray radiography and density measurement to quantify the pore size and distribution.Öğe Investigating the Optimum Model Parameters for Casting Process of A356 Alloy: A Cross-validation Using Response Surface Method and Particle Swarm Optimization(Springer Heidelberg, 2020) Sensoy, Abdullah Tahir; Colak, Murat; Kaymaz, Irfan; Dispinar, DeryaThis study aimed to determine the optimal casting parameters for the maximum fluidity of A356 alloy. Gravity die cast method was used. For this purpose, central composite design (CCD) was performed. The input parameters and their limits for the trial design were selected as pre-heating temperature (100-400 degrees C), casting temperature (680-760 degrees C), and cross-sectional thickness (1-10 mm). Using the CCD-based simulation results of the feed distance, a highly correlated full-quadratic regression equation was obtained with the highestR(2)(0.99), which then was used as the objective function for the particle swarm optimization (PSO) process. The highest value of the response parameter, flow distance, reached up to 491.19 mm when the input parameters were selected as 400 degrees C, 760 degrees C and 10 mm, respectively. The sensitivity analysis has shown that the most effective parameter on the fluidity is the cross-sectional thickness. The response surface method (RSM)-based optimization results have been also validated using the PSO method. Although the higher temperatures have been found to result in better fluidity, there may be some drawbacks to working at higher temperatures such as energy cost and mould life. To determine the optimum input parameters, the RSM model suggested in this study can be modified for any type of casting process. Moreover, especially for a complex-shaped part, the manufacturer can be advised regarding operating conditions such as pre-heating and casting temperatures.