Yazar "Gedikli H." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The effect of magnetic field distribution and pole array on the vertical levitation force properties of HTS Maglev systems(Institute of Electrical and Electronics Engineers Inc., 2015) Ozturk K.; Abdioglu M.; Sahin E.; Celik S.; Gedikli H.; Savaskan B.In this paper, the levitation force measurements have been carried out by the magnetic force measurement system under both field-cooling and zero-field-cooling regimes, whereas the magnetic field distribution over the permanent-magnet guideway (PMG) was calculated by numerical analysis based on the finite-element method. It was shown in this study that the vertical levitation capability and stability of Maglev systems can be improved depending on the cooling regime, pole number, and suitable arrangement of the PMG. In this paper, it was shown that when the pole number increases, the levitation force density increases. It also appeared that the reasonable position of the supplementary permanent magnet and appropriate cooling heights are key parameters for both levitation performance and stabilization of the high-temperature superconductor (HTS) Maglev. It is believed that the numerical and experimental data in this paper are useful for relative design and practical application of HTS Maglev systems. © 2015 IEEE.Öğe Levitation and guidance force efficiencies of bulk YBCO for different permanent magnetic guideways(Elsevier Ltd, 2015) Abdioglu M.; Ozturk K.; Gedikli H.; Ekici M.; Cansiz A.The development of superconductor Maglev systems depends on various disciplinary studies due to the inherent composition of available technologies. Because the fabrication cost is very effective on the Maglev, the requirement of the efficiency improvement focuses the researchers on the design considerations. In this study, the guidance force, the magnetic levitation force (MLF) and magnetic stiffness of different permanent magnetic guideway (PMG) arrangements were investigated in different cooling heights (CH) to enhance the efficiency of Maglev system. The single domain cylindrical bulk YBCO superconductors fabricated by top seeding method with the diameter of 45 mm and the height of 15 mm were used as HTS. Magnetic field distributions of the PMGs were calculated by finite element method to determine optimum HTS-PMG arrangements. We have used auxiliary onboard permanent magnets with YBCOs to improve the MLF of three pole Halbach PMG arrangements. It is seen that the efficiency of Maglev systems can be improved by using suitable HTS-PMG arrangements. In this study cost efficiency of the integrated levitation and guidance force ((Fz)max(Fx)max/(SPMG ? Cost)) was also determined. It is inferred from this study that the cooling height and PMG-HTS arrangement are key parameters for guidance force, levitation force, magnetic stiffness and efficiency of Maglev systems. It is believed that this study will supply useful references for practical application of HTS Maglev systems. © 2015 Elsevier B.V. All rights reserved.