Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Guclu T." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A novel method based on thermal conductivity for material identification in scrap industry: An experimental validation
    (Elsevier B.V., 2018) Cuce E.; Cuce P.M.; Guclu T.; Besir A.; Gokce E.; Serencam U.; Serencam H.
    Fast, accurate and reliable identification and sorting of materials is still a challenge in recycling sector. Scrap metals are often classified through density and colour, which cause notable financial burdens to the companies in most cases. Within the scope of this research, a novel method based on thermal conductivity is presented for material identification in scrap industry. The unit consists of a constant heat flux source and a cooling system, in which axial heat conduction is enabled and radial heat transfer is eliminated. For the steady-state conditions, temperature gradient across the sample metals is measured along with the constant heat flux value, and the thermal conductivity of the samples is determined via the Fourier's heat conduction law. Copper, brass and stainless steel samples are considered in this research to verify the accuracy of the results. For a reliable and scientific approach, three independent sets of experiments are conducted, and the results are evaluated in terms of accuracy and consistency. Experimental thermal conductivity values of the said samples are compared with the reported data in literature and a good accordance is achieved. Error in measurements is calculated to be 1.37, 3.31 and 4.46% for copper, brass and stainless steel sample, respectively which is acceptable. The tests are repeated with highly sensitive probes for aluminium sample, and the measurement error is calculated to be 0.56%. © 2018 Elsevier Ltd
  • Küçük Resim Yok
    Öğe
    Thermoelectric Coolers (TECs): From Theory to Practice
    (Springer New York LLC, 2019) Guclu T.; Cuce E.
    Thermoelectric coolers (TECs) are solid state units, which provide reliable energy conversion with no noise or vibration. They are also lightweight and do not include any moving parts. The current coefficient of performance (COP) range of TECs has shown a trend of improvement, and TECs have a wide range of usage areas. Within the scope of this research, TECs are comprehensively evaluated in terms of several aspects such as type, material, design, modelling, thermal performance, potential applications, economic and environmental issues. It can be achieved through the results that the COP of TECs is highly dependent on the temperature difference between hot and cold side (?T), and maximum COP is obtained when ?T is close to zero. It is also observed that COP can be enhanced by more than 55% when the hot side is thermally regulated by phase change materials (PCMs) or integrated with a water cooling unit. © 2018, The Minerals, Metals & Materials Society.

| Bayburt Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bayburt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Bayburt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim