Yazar "Gungor, Okan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The effect of various industrial dust particles on the performance of photovoltaic panels in Turkey(Springer Heidelberg, 2023) Gungor, Okan; Kahveci, Hakan; Gokce, H. SuleymanThe accumulation of dust is one of the main causes of power loss in photovoltaic (PV) farms, and the effect of dust particles' size and chemistry on system performance is often overlooked. This study has focused on a comprehensive analysis of the effect of different dust particles collected from common industrial production facilities in Turkey on the performance of PV panels in the indoor laboratory environment. The collected dust samples were analyzed to determine the dust sample particles' chemical properties, size, character, and topography. The data for dust samples at different weights with changes in maximum power point (MPP) of PV panel has been collected using the artificial solar irradiation source system. Thus, the mathematical correlations (R-2 >= 0.965) between the PV panel Thevenin resistance (RTH), fill factor (FF), MPP, and pollution rate were obtained using these collected data and particle swarm optimization (PSO). According to the results of the obtained mathematical correlations, marble dust is 2.3, 3.4, and 4.2 times less polluting than cement, fly ash, and silica fume, respectively. Additionally, it was observed that smaller dust particles block more light than larger ones of the same weight and reduce MPP, FF while increasing the R-TH.Öğe MODELING OF BOOST AND CUK CONVERTERS AND COMPARISON OF THEIR PERFORMANCE IN MPPT(Yildiz Technical Univ, 2020) Gungor, Okan; Yuksek, Halil IbrahimThe efficiency of photovoltaic (PV) panel systems depends on the structure of the photovoltaic cells and the transfer of energy from the PV panel to load. The focus of this study is energy transfer. The most important component in the energy transfer is maximum power point tracking (MPPT). The MPPT consists of two components: the algorithm for calculation the maximum power and the hardware for power generating. This study investigates how some the DC-DC converters (hardware) impact on the performance of the MPPT under six different environmental conditions by using two different duty cycle calculation methods. Contribution of this study to the literature is to analyze the performance of some the DC-DC converters in MPPT by completely eliminating the effect of MPPT algorithms. As a result of this study, while using the Boost converter in MPPT applications, the internal resistance of the PV panel must be equal or smaller than load resistance. However, the Cuk converter can reach to maximum power point in all conditions such as temperature, radiation and load.Öğe Novel PV Array Reconfiguration and Integration with a Maximum Power Point Tracking Algorithm: RMPPT(Springer Heidelberg, 2023) Gungor, Okan; Kahveci, HakanPartial shading significantly impacts the output power of photovoltaic (PV) arrays. This issue can be addressed by reconfiguring connections or positions of modules within the PV array. However, reconfiguration approaches present some drawbacks including the requirements of manual effort, complex algorithms, difficulty in implementation, and switching matrices that increase power losses. To overcome these issues, we present a low-cost and easily implemented reconfiguration method with integration into a maximum power point tracking (MPPT) algorithm for a PV array. We denote our MPPT approach as reconfigurable MPPT (RMPPT), and verify its applicability using a particle swarm optimization (PSO) algorithm, namely the reconfigurable PSO. Consequently, this approach has enhanced the output power of the PV array by at least 7.2% compared to PNO (perturb and observe) and PSO-based MPPT under realistic weather conditions.