Yazar "Kabaer M." seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Clarification of magnetic levitation force and stability property of multi-seeded YBCO in point of supercurrent coupling effect(Elsevier Ltd, 2016) Ozturk K.; Kabaer M.; Abdioglu M.; Patel A.; Cansiz A.In our study as different from the literature, which are mostly related to superconductor fabrication, application and optimization, especially physical origins of bulk supercurrent generation, magnetic levitation and stability properties of the multi-seeded YBCO superconductor are investigated in point of supercurrent coupling effect. Besides the experimental measurements, a simplified simulation of the supercurrent coupling in the multi-seeded bulk YBCO is carried out based on the experimental Jc(B) data taken from literature and using the critical state method and H-formulation together in COMSOL Multiphysics package, to further elucidate the mechanism of supercurrent generation and guidance force. The bigger guidance force and lateral magnetic stiffness values of PMG-B arrangement with three Bzpeaks than the other arrangements with one Bzpeak in small cooling height of 5 mm are attributed to the more robust individual intragrain supercurrents, rather than intergrain supercurrent, due to the position coincidence in the z-direction between grains and permanent magnet poles. Additionally, it can be said that PMG-C arrangement with one Bzpeak getting to the maximum guidance force value when the cooling height increase from 5 mm to 15 mm, points out for large cooling height the intergrain supercurrents dominate, whereas for the small cooling height the intragrain supercurrents have most effect on the guidance force. Also, performed the supercurrent simulations, using different current flow constraint ratio f (or supercurrent coupling parameter), clearly reproduced the qualitative change in the trapped field profile when the allowed intergrain current compared to no intergrain current (f = 0). It is thought that the presented results, related to the supercurrent generation, coupling mechanism and their effect on levitation and lateral force properties, have utilization potential for researches not only they study on new multiseed superconductor fabrication method, but also they study on superconductor applications. © 2016 Elsevier B.V.Öğe Comparative study of the magnetic stiffness, levitation and guidance force properties of single and multi seeded YBCOs for different HTS-PMG arrangements(Elsevier Ltd, 2015) Ozturk K.; Sahin E.; Abdioglu M.; Kabaer M.; Celik S.; Yanmaz E.; Kucukomeroglu T.Abstract It is crucial to improve the magnetic levitation, guidance and stiffness performances of the HTS Maglev systems for real-scale applications. In this study, the magnetic levitation force, guidance force and magnetic stiffness values were determined for single and multi-seeded YBCOs on different PMGs in ZFC regime and different cooling heights (CHs) after the magnetic flux distributions simulation of the using PMGs. Implemented study showed that the additional downward PMs make an enhancing contribution on the magnetic levitation force, guidance force and magnetic stiffness of both single and multi-seeded YBCOs. It was also determined that both the force and stiffness ratios of multi-seeded YBCO to single-seeded YBCO increase with increasing CH, indicating that the multi-seeded YBCO has much more interaction domain than single-seeded at higher gaps. It is considered that the results obtained in this study are very useful in technological applications of Maglev and bearing systems, because there is no detailed study on the magnetic stiffness, levitation and guidance force comparison to clarify electromagnetic behavior of single and multi-seeded YBCOs for different HTS-PMG arrangements. © 2015 Elsevier B.V.Öğe Effect of onboard PM position on the magnetic force and stiffness performance of multi-seeded YBCO(Elsevier Ltd, 2015) Ozturk K.; Kabaer M.; Abdioglu M.Abstract In implemented studies before, although some advancements have been achieved in improving on the levitation or guidance force efficiency of YBCOs separately, both of these forces could not been enhanced simultaneously. In our study, we investigated levitation, guidance force and magnetic stiffness properties of multi-seeded YBCO bulk depending on different position of onboard PM in different CHs above a Halbach PMG to obtain larger vertical load capability, stability and relating stiffness values at the same time. The levitation, guidance force and relating stiffness measurements were carried out between multi-seeded YBCO and Halbach PMG depending on the onboard PM positions and cooling heights after the magnetic flux distributions modelling of Halbach PMG with onboard PMs. In this paper, it has clearly seen that the levitation force and the vertical magnetic stiffness values increase in optimal onboard PM position, with negligible lose in guidance force and lateral magnetic stiffness values. It is inferred from this study that reasonable position of the onboard PM according to PMG, the cooling conditions and compatibility of YBCO-PMG arrangement in point of magnetic flux distribution are key parameters for efficiency of the load, guidance force and relating magnetic stiffness of Maglev systems. The results obtained in this study have a potential on improvement of HTS Maglev system electromagnetic force capability. © 2015 Elsevier B.V.Öğe Lateral Position Effect of Auxiliary Permanent Magnets on the Magnetic Force Properties of Cylindrical YBCO(Springer New York LLC, 2017) Abdioglu M.; Kabaer M.; Ozturk K.; Erdem O.; Celik S.The magnetic levitation force (MLF) and the guidance force (GF) should be improved for loading capacity and stability of Maglev systems, respectively. Although there are some ways to increase these properties, using of auxiliary onboard permanent magnets (PMs) can be considered as the most efficient one. The auxiliary PMs increase the MLF significantly but, at the same time, decrease the GF. We have searched a solution to overcome this problem in this study. Firstly, we have determined the optimum vertical positions of the auxiliary PMs and then we have investigated the vertical levitation force and lateral guidance force of hybrid Maglev system depending on lateral position of auxiliary PMs in different cooling heights (CHs). A cylindrical YBCO superconductor, fabricated by a top seeding method with the diameter of 45 mm and the height of 15 mm, was used as a high-temperature superconductor (HTS). The maximum increment rate in MLF and the minimum decrement rate in GF were observed as 277 and 54 %, respectively. The increment in MLF was obtained five times more than the decrement in GF, and this reality points out that the results of this study can be useful for improving the loading capacity and thus enhancing the practical applicability of Maglev systems. © 2016, Springer Science+Business Media New York.Öğe Levitation and guidance force relaxations of the single?seeded and multi?seeded YBCO superconductors(Elsevier B.V., 2018) Abdioglu M.; Ozturk K.; Kabaer M.; Ekici M.The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)?permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single?seeded and multi?seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi?seeded YBCOs are better than that of the single?seeded ones. This magnetic force and relaxation results of the single?seeded and multi?seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems. © 2017 Elsevier B.V.