Yazar "Karaali R." seçeneğine göre listele
Listeleniyor 1 - 9 / 9
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effects of ambient conditions on performance of gas turbine cogeneration cycles(Turkish Society for Thermal Science and Technology, 2017) Karaali R.; Oztürk I.T.In this paper, effects of the ambient conditions on performance of cogeneration cycles are analyzed by using exergy analysis method. These cogeneration cycles are the simple cycle, the air preheating cycle, the air-fuel preheating cycle and the inlet air cooling cycle. Also, these cycles are evaluated thermodynamically for different air and fuel mass ratio and the performance of these cycles are compared. The electrical power generation increases about 10-15 % by decreasing the inlet air temperature of the compressor from 25 0C to 0 0C. However, the thermal power decreases about 10 % with decreasing inlet air temperature. During the summer, the electric power can be easily increased 2-7 % by injecting water into the inlet air of the compressor. The exergetic efficiency of cycles is decreased 11-13 %, by decreasing the compressor inlet air pressure from 101.3 kPa to 70.18 kPa. But this change decreases the electric power generation about 25 %. The highest exergy efficiency is obtained for the air-fuel preheated cycle. The simple cycle is the best among the four cycles to obtain high heat rate and heat exergy. The effects of all ambient conditions on these cycles are considered simultaneously, analyzed and compared with each other in this study. © 2017 TIBTD Printed in Turkey.Öğe Efficiency improvement of gas turbine cogeneration systems(Strojarski Facultet, 2017) Karaali R.; Öztürk İ.T.In this study eight methods are evaluated for a gas turbine cogeneration cycle to improve the efficiency. These methods are increasing gas turbine inlet air temperature, cooling the inlet air of the compressor, air preheating, fuel preheating, increasing compressor inlet air pressure, increasing air excess rates, steam injection, and humidification of the inlet air of the compressor. These methods are studied in order to compare their effects on the performance of the systems. The effects of these methods on the exergetic efficiency depend on the kind of the cogeneration cycle. By combining recuperation, preheating fuel and steam injection methods high efficiency can be achieved. The combined methods give the best results under variable heat demands of the market. An appropriate combination of the efficiency improvement methods may increase the exergetic efficiency about 20 %. The results show that efficiency improvement methods must be applied together whenever it is possible. © 2017, Strojarski Facultet. All rights reserved.Öğe Exergy analysis of a combined power and cooling cycle(Polish Academy of Sciences, 2016) Karaali R.Ammonia-water power cycles are important for efficient utilization of low temperature heat sources such as geothermal, solar, waste heat sources, etc. For some special conditions ammonia-water power cycle is an important and economical option. This paper presents an exergetic analysis of a combined power and cooling cycle that uses ammonia-water mixture as working fluid. Such cycles, use solar or geothermal energy or waste heat energy from a conventional power cycle. Ammonia-water power cycle can be used as independent cycles to provide power output and cooling. For a range (25-55 Bar) of boiler pressure the performance of the combined power and cooling cycle is investigated. The exergy of the boiler is very low compared to its energy. There is a boiling process and a heat transfer process at low temperature, both of which destruct the energy given to the boiler, so that the energy efficiency is low; however the exergy efficiency is higher than the energy efficiency. Increasing the turbine inlet pressure decreases the energy and exergy efficiencies.Öğe Investigation of an alternative fuel for diesel engines(Polish Academy of Sciences, 2015) Keven A.; Karaali R.Internal combustion engines use generally fossil fuel products. World resources of it is limited. Renewable alternative energy sources are getting important solution for energy demand. Hazelnut oil ethyl ester is obtained from raw hazelnut and mixed with diesel oil in certain proportions to use in a four-stroke direct injected single cylinder diesel engine. In this study the effects of the mixture of diesel oil with hazelnut oil ethyl ester on the engine performance and exhaust gas emissions are investigated for the first time in literature. The fuel injection system is regulated to use the mixture in the engine for the investigation. The results show that, the mixture with 25% ethyl ester extracted from hazelnut oil can be used as an alternative fuel without any change or regulation of the diesel engine.Öğe Performance analyses of gas turbine cogeneration plants(Turkish Society for Thermal Science and Technology, 2017) Karaali R.; Oztürk I.T.In this study, some improving methods of gas turbine cogeneration cycles are applied on a simple cogeneration cycle. These methods are preheating air, preheating air and fuel, inlet air cooling by using evaporative cooling and absorption cooling. These cogeneration systems are evaluated with respect to energy efficiency (energy utilization factor), exergetic efficiency, electric and heat power, electric-heat energy rate, artificial thermal efficiency and fuel energy saving ratio and are compared with each other. In these analyses, the thermodynamic parameters such as compressing ratio, air and fuel mass ratio and compressor inlet temperatures of the cycles are used. It is concluded that these parameters can be listed from most effective to least effective as air fuel ratio, pressure ratio and compressor inlet temperature. It is also concluded that the most efficient cycle is found to be the air-fuel preheated cycle for obtaining more electric power and less heat power, and the simple cycle is the most suitable one for obtaining more heat power and less electric power. © 2017 TIBTD Printed in Turkey.Öğe Thermodynamic analysis of a cascade refrigeration system(Polish Academy of Sciences, 2016) Karaali R.There is a need for cooling by using the waste heat energy in food industry. Absorption cycles can be driven by waste thermal, geothermal, solar or industrial processes energies. In this study, cascade refrigeration system is thermodynamically modeled, and analyzed by using first law of thermodynamics, and exergy method. Thermodynamic properties such as pressure, temperature, entropy, enthalpy, exergy, mass flow rate in each stream are calculated for 50, 75, 100?C and for 0.8, 1.0, and 1.5 MPa pump pressure. A computer program is used that was prepared in FORTRAN by the author for the analyses. It is found that the compression-absorption cascade cooling cycle is appropriate for most of the kind of waste heat applications. Increase of the generator inlet heat temperature increases the generator inlet heat, the absorber outlet heat and the condenser 2 outlet heat energies and decreases the coefficient of performance of the absorption and the overall cycles. The generator heat decreases with increase of the pump pressure. Also increase of the pump pressure decreases the coefficient of performance of the absorption and the overall cycles. Increase of the pump pressure and the generator temperature decreases the exergetic coefficient of performance. Increase of the generator temperature and pump pressure increases the generator inlet exergy. It is concluded that increase of the generator temperature and the pump pressure increases the total destructed exergy of the cycle.Öğe Thermodynamic optimization of a zero CO2 emission cogeneration cycle(Parlar Scientific Publications, 2016) Karaali R.; Ozturk I.T.CO2 emissions that have the greatest negative impact on the greenhouse and the global warming that should be decreased or kept at the same rates. Today fossil fuels share 60 % of total electricity production of the world, which plays an important role on CO2 emissions. Thermal cogeneration and zero CO2 emission cycles have potential for reducing this effect. By taking into consideration the most applicable and important zero CO2 emission cycles, a new cycle is designed. Thermodynamic analyses and optimization of this cycle is studied with FORTRAN code. The optimization results of this cycle show that the maximum exergy efficiency of this new cycle is 64 %, which is 17.6 % higher than (0,544) the one for the air preheated cogeneration cycle (APHCC) and 18.7 % higher than (53,9) the absorption cooling zero CO2 emission cycle (ACZEC). In the introduced new cycle, steam and CO2 in the exhaust gases are condensed so that the condensing energy of them is regained. For that reason, the heat output and the electrical power of the introduced cycle is better than the other cogeneration cycles. © 2016 PSP.Öğe Thermoeconomic analyses of steam injected gas turbine cogeneration cycles(Polish Academy of Sciences, 2015) Karaali R.; Öztürk I.T.In this study, three different gas turbine cogeneration systems that are preheating air, preheating air-fuel and simple cycles where steam injected in to combustion chamber are analyzed. The effects of steam injection on thermoeconomic performance are calculated and obtained. By using the first law of thermodynamics, the exergy analysis and economic methods, simulation programs written by the authors in FORTRAN code are obtained to use for the analyses. Thermoeconomic performance of these three different cycles for different stage and variable mass of injected steam are obtained and compared with literature. The effects of injection steam in to combustion chambers of those three cycles for variable compressing ratios, on power, efficiencies, product price and performances are obtained. Consequently, the advantages and the disadvantages of injection steam are evaluated. The results obtained in this study are compared with the results available in the literature. Injection steam into combustion chamber increases the electricity efficiency and electricity power but decreases the heat power of the cycles. Also the produced electricity price for per kWh is increasing.Öğe Thermoeconomic optimization of gas turbine cogeneration plants(Elsevier Ltd, 2015) Karaali R.; Öztürk T.T.In this study, a novel thermoeconomic optimization method that is simple and efficient, for real complex cycles is introduced. First, a thermoeconomic analysis method that is called non-linear simplex direct search method is improved for the purposes of this study. The objective of this paper is to apply this method to four cogeneration cycles that are simple cycle, inlet air cooling cycle, air preheated and air-fuel preheated cycles for analyzing and optimizing. The four cycles are thermoeconomically optimized for constant power and steam mass (30MW and 14kg/s saturated steam flow rate at 2000kPa), for constant power (30MW) and for variable steam mass, and for variable power and steam mass by using the cost equation method and the effect of size on equipment method. The results obtained by the effect of size on equipment and by the cost equations methods are very different from each other. For the case of global optimization, the optimum electricity costs which also correspond to minimum are obtained as 0,0432$/kWh for simple cycle, 0,0514$/kWh for inlet air cooling cycle 0,0577$/kWh for air preheated cycle and 0,058$/kWh for air-fuel preheated cycle by using cost equations method. © 2014 Elsevier Ltd.