Yazar "Karakaş I.H." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The effects of fuel type in synthesis of NiFe2O4 nanoparticles by microwave assisted combustion method(Institute of Physics Publishing, 2016) Karakaş Z.K.; Boncukçuo?lu R.; Karakaş I.H.In this study, it was investigated the effects of the used fuels on structural, morphological and magnetic properties of nanoparticles in nanoparticle synthesis with microwave assisted combustion method with an important method in quick, simple and low cost at synthesis of the nanoparticles. In this aim, glycine, urea and citric acid were used as fuel, respectively. The synthesised nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmet-Teller surface area (BET), and vibrating sample magnetometry (VSM) techniques. We observed that fuel type is quite effective on magnetic properties and surface properties of the nanoparticles. X-ray difractograms of the obtained nanoparticles were compared with standard powder diffraction cards of NiFe2O4 (JCPDS Card Number 54-0964). The results demonstrated that difractograms are fully compatible with standard reflection peaks. According to the results of the XRD analysis, the highest crystallinity was observed at nanoparticles synthesized with glycine. The results demonstrated that the nanoparticles prepared with urea has the highest surface area. The micrographs of SEM showed that all of the nanoparticles have nano-crystalline behaviour and particles indication cubic shape. VSM analysis demonstrated that the type of fuel used for synthesis is highly effective a parameter on magnetic properties of nanoparticles. © Published under licence by IOP Publishing Ltd.Öğe The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method(Elsevier, 2015) Karcio?lu Karakaş Z.; Boncukcuo?lu R.; Karakaş I.H.; Ertu?rul M.NiFe2O4nanoparticles were synthesized using the microwave assisted combustion method based on metal nitrate salts and urea. To remain of organic matters and to stabilize the particles, samples were thermally treated at various temperatures from 300-800 °C. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The heat treated samples show the reflection planes of (111), (220), (222), (311), (400), (422), (511), and (440) which perfectly confirm to a cubic spinel phase of NiFe2O4and no secondary phases were detected in the XRD patterns of the samples. The crystallite sizes calculated using the Debye-Scherrer formula were found to increase with the heat treatment temperature, from about 4 nm at 300 °C-85 nm at 800 °C. EDX results verify that the compositional mass rations were relevant, as expected from the synthesis. The micrographs of SEM and TEM showed that all of the samples have nano-crystalline behavior and particles indication cubic shape. Magnetization measurements were obtained at room temperature by using a VSM, which demonstrated that the all of the samples synthesized with heat treatment exhibited ferromagnetic behaviors. © 2014 Published by Elsevier B.V.