Yazar "Karakaya, Songul" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Phytochemical analysis and biological evaluation of essential oils and extracts from Heracleum pastinacifolium subsp. incanum (Boiss. & A.Huet) PHDavis, an endemic plant from Turkey(Taylor & Francis Ltd, 2024) Yuca, Hafize; Sefali, Abdurrahman; Aydin, Bilge; Karadayi, Mehmet; Gulsahin, Yusuf; Yazici, Aysenur; Karakaya, SongulEssential oil content of and phenolic compounds flower-fruit, root, and aerial parts of Heracleum pastinacifolium subsp. incanum were analysed by GC/MS and LC/MS methods, respectively. Antidiabetic, anticholinesterase, and antioxidant activities of flower-fruit, root, aerial parts methanol extracts were evaluated. Apiole (35.0%), myristicine (72.2%), and myristicine (15.1%) were found as major compounds of fruit-flower mixture, root, aerial part essential oils, respectively. Hesperidin was found the highest amount in aerial part and flower-fruit extracts with 8904.2621 ng/mL and 11558.3634 ng/mL values, respectively. Fruit-flower extract showed the highest activity against alpha-glucosidase (24%). Root extract demonstrating the highest activity (18%) against AChE enzyme. Flowers-fruits mixture methanol extract had a higher % inhibition value on ABTS(+) and DPPH center dot. Flowers-fruits mixture methanol extract was rich in total phenol, total tannin, and protein content. All the extracts were determined as genetoxically safe according to the results of Ames/Salmonella, Escherichia coli WP2 and Allium cepa assays.Öğe Suberosin Alleviates Sepsis-Induced Lung Injury in A Rat Model of Cecal Ligation and Puncture(Taylor & Francis Inc, 2023) Uzuncakmak, Sevgi Karabulut; Halici, Zekai; Karakaya, Songul; Kutlu, Zerrin; Saglam, Yavuz Selim; Bolat, Ismail; Aydin, PelinBackground/aims Sepsis is one of the major problems encountered in intensive care units, causing organ damage and increasing mortality. Suberosin (SBR) is a type of coumarin with antioxidant and anti-inflammatory activities. The goal of this study is to explore the protective effects of SBR on the lungs in a rat model of sepsis. Methods Male Wistar rats were utilized in this study. A cecal ligation and puncture (CLP) model was applied to induce sepsis. Rats were separated into six groups with nine animals in each group, including healthy control, SBR, CLP, and CLP + SBR (5, 10, and 20 mg/kg) groups. Superoxide dismutase (SOD), glutathione (GSH) enzyme activities, and malondialdehyde (MDA) level were measured via enzyme-linked immunosorbent assay (ELISA). The messenger RNA (mRNA) expressions of tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) were evaluated by real-time polymerase chain reaction (RT-PCR). Histopathological changes in the lungs were investigated with hematoxylin and eosin (H&E). Results MDA levels and GSH and SOD enzyme activities were negatively affected in the CLP group, but SBR treatment ameliorated these oxidative stress parameters in the SBR1-3 groups (p< 0.05). The mRNA expressions of TNF-alpha and IL-1 beta were increased in the CLP group, and SBR treatment decreased those expression levels in a dose-dependent manner (p < 0.05). Organ damage and necrosis were seen in the CLP group and were alleviated in the SBR3 group. Immunohistochemical (IHC) analysis of lung tissues demonstrated decreased TNF-alpha and IL-1 beta immunopositivity in the SBR1-3 groups (p< 0.05). Conclusions SBR ameliorated sepsis-related lung injury in a dose-dependent manner. This compound has significant potential as a future agent in the treatment of sepsis.