Yazar "Kothakota, Anjineyulu" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Impact of different microwave treatments on food texture(Wiley, 2022) Kutlu, Naciye; Pandiselvam, Ravi; Saka, Irem; Kamiloglu, Aybike; Sahni, Prashant; Kothakota, AnjineyuluElectromagnetic waves are frequently used for food processing with commercial or domestic type microwave ovens at present. Microwaves cause molecular movement by the migration of ionic particles or rotation of dipolar particles. Considering the potential applications of microwave technique in food industry, it is seen that microwaves have many advantages such as saving time, better final product quality (more taste, color, and nutritional value), and rapid heat generation. Although microwave treatment used for food processing with developing technologies have a positive effect in terms of time, energy, or nutrient value, it is also very important to what extent they affect the textural properties of the food that they apply to. For this purpose, in this study, it has been investigated that the effects of commonly used microwave treatments such as drying, heating, baking, cooking, thawing, toasting, blanching, frying, and sterilization on the textural properties of food. In addition, this study has also covered the challenges of microwave treatments and future work. In conclusion, microwave treatments cause energy saving due to a short processing time. Therefore, it can be said that it affects the textural properties positively. However, it is important that the microwave processing conditions used are chosen appropriately for each food material.Öğe Impact of ultrasonication applications on color profile of foods(Elsevier, 2022) Kutlu, Naciye; Pandiselvam, R.; Kamiloglu, Aybike; Saka, Irem; Sruthi, N. U.; Kothakota, Anjineyulu; Socol, Claudia TereziaFood color is a feature that provides preliminary information about their preference or consumption. There are dominant pigments that determine the color of each food; the most important pigments are anthocyanins (red-purple color), chlorophylls (green color), carotenoids (yellow-orange color), and betalains (red color). These pigments can be easily affected by temperature, light, oxygen, or pH, thereby altering their properties. Therefore, while processing, it is necessary to prevent the deterioration of these pigments to the maximum possible extent. Ultrasonication, which is one of the emerging non-thermal methods, has multidimensional applications in the food industry. The present review collates information on various aspects of ultrasonication technology, its mechanism of action, influencing factors, and the competence of different ultrasonication applications (drying, irradiation, extraction, pasteurization, cooking, tempering, etc.) in preserving the color of food. It was concluded that ultrasonication treatments provide low-temperature processing at a short time, which positively influences the color properties. However, selecting optimum ultrasonic processing conditions (frequency, power, time, etc.) is crucial for each food to obtain the best color. The key challenges and limitations of the technique and possible future applications are also covered in the paper, serving as a touchstone for further research in this area.Öğe Ozone and cold plasma: Emerging oxidation technologies for inactivation of enzymes in fruits, vegetables, and fruit juices(Elsevier Sci Ltd, 2023) Mayookha, V. P.; Pandiselvam, R.; Kothakota, Anjineyulu; Ishwarya, S. Padma; Khanashyam, Anandu Chandra; Kutlu, Naciye; Rifna, E. J.Inactivation of deteriorative enzymes preserves the quality of fruits and vegetables and extends the shelf-life of fruit juices. Ozonation and cold plasma treatment are recent additions to the thermal and non-thermal methods for enzyme inactivation. However, these techniques stand out in their effectiveness and versatility for the treatment of a wide range of fruits and vegetables. This article appraises the mode of action and applications of ozone and cold plasma for the inactivation of enzymes in fruits, vegetables, and fruit juices. Further, a comprehensive discussion is presented on the influential parameters of enzyme inactivation effectiveness of ozonation and cold plasma processing. Besides, the latter sections of this article highlight the challenges that impose hurdles in the commercial applications of these unconventional techniques and the way forward in improving their efficacy and industrial applications.