Yazar "Ozcan, Hasan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Thermoeconomic analysis of a hybrid cogeneration plant with use of near-surface geothermal sources in Turkey(Pergamon-Elsevier Science Ltd, 2021) Tozlu, Alperen; Gencaslan, Betul; Ozcan, HasanIn this study, thermodynamic and thermoeconomic analyses of systems that produce electricity and heat through the use and storage of solar energy and near-surface geothermal sources are carried out. Three different configurations, which are the organic Rankine cycle (ORC), cogeneration system (CGN) and hybrid system (HYB), are coupled to the parabolic trough collector (PTC) system. The systems are named PTC-ORC, PTC-CGN and PTC-HYB are conducted. The reference system called PTC-ORC only produces electrical energy with parabolic trough collectors and it does not have a thermal energy storage system, whereas in PTC-CGN, in addition to the cogeneration of electricity and heat, thermal energy storage is also available. Finally, thermodynamic and economic analyses are conducted in the PTC-HYB with the assistance of near-surface geothermal energy, which is widely available in Turkey. In this study, the actual data of Ankara Kizilcahamam near-surface geothermal fields are taken as the heat source for the hybrid system. These facilities, each producing 1 MW of electricity, are first optimized with the help of parametric studies, and exergoeconomic analysis is performed with respect to optimum thermal conditions. The electricity production costs of PTC-ORC, PTC-CGN and PTC-HYB are found to be 0.257 $/kWh, 0.448 $/kWh and 0.401 $/kWh, respectively. The study demonstrates that thermal energy storage brings extra costs, while near-surface geothermal sources may help decrease energy costs from renewables. (c) 2021 Elsevier Ltd. All rights reserved.Öğe Thermoeconomic analysis of a low-temperature waste-energy assisted power and hydrogen plant at off-NG grid region(Elsevier, 2022) Tozlu, Alperen; Kayabasi, Erhan; Ozcan, HasanIn this study, thermoeconomic analysis of a CO2 power cycle and PEM hydrogen system using ultra-low temperature waste heat from a milk production facility is conducted. In the transcritical CO2 cycle, low-temperature LNG evaporation is used for cooling the condenser to increase the temperature difference enabling low temperature waste heat use. In addition, a PEM electrolyzer produces hydrogen to reduce the LNG requirement at the plant. A CO2-water exchanger has been designed to recover the pasteurized water's excess heat and evaporate the CO2 using Simcenter-Flomaster software. The inlet mass flow rates and outlet temperatures of the heat exchanger were optimized by performing thermoecomic analysis, and the thermal and economic performance of the facility was examined. The power cycle has 14% higher efficiency when LNG is used as the heat sink compared to ambient temperature condensation with an electricity production cost range at 0.05-0.11 $/kWh, and the hydrogen generation cost is between $2.6-5.20 kg(-1). It is found that the plant could only be economically feasible when less than 50% of the power produced is used for hydrogen generation. Consequently, the proposed system can co-generate power and on-demand hydrogen in off-NG grid regions with reasonable investment and product costs.