Yazar "Ozdemir, Mehmet Emin" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Application of artificial neural networks in the analysis of the continuous contact problem(Techno-Press, 2022) Yaylaci, Ecren Uzun; Oner, Erdal; Yaylaci, Murat; Ozdemir, Mehmet Emin; Abushattal, Ahmad; Birinci, AhmetThis paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for contact pressures and contact lengths under the rigid punch, the initial separation loads, and the initial separation distances of a contact problem. The problem consisted of two elastic infinitely layers (EL) loaded by means of a rigid cylindrical punch and resting on a half-infinite plane (HP). Firstly, the problem was formulated and solved theoretically using the Theory of Elasticity (ET). Secondly, the contact problem was extended based on the ANN. External load, the radius of punch, layer heights, and material properties were created by giving examples of different values used at the training and test stages of ANN. Finally, the accuracy of the trained neural networks for the case was tested using 134 new data, generated via ET solutions to determine the best network model. ANN results were compared with ET results, and well agreements were achieved.Öğe Research of the crack problem of a functionally graded layer(Techno-Press, 2024) Yaylaci, Murat; Yaylaci, Ecren Uzun; Turan, Muhittin; Ozdemir, Mehmet Emin; Ozturk, Sevval; Ay, SevilIn this study, the two-dimensional crack problem was investigated by using the finite element method (FEM)based ANSYS package program and the artificial neural network (ANN) -based multilayer perceptron (MLP) method. For this purpose, a half -infinite functionally graded (FG) layer with a crack pressed through two rigid blocks was analyzed using FEM and ANN. Mass forces and friction were neglected in the solution. To control the validity of the crack problem model exercised, the acquired results were compared with a study in the literature. In addition, FEM and ANN results were checked using Root Mean Square Error (RMSE) and coefficient of determination (R2), and a well agreement was found. Numerical solutions were made considering different geometric parameters and material properties. The stress intensity factor (SIF) was examined for these values, and the results were presented. Consequently, it is concluded that the considered non -dimensional quantities have a noteworthy influence on the SIF. Also FEM and ANN can be logical alternative methods to time-consuming analytical solutions if used correctly.