Yazar "Prasad O." seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Conformational and spectroscopic behaviors of 2,4-xylyl isothiocyanate(Elsevier, 2015) Cinar M.; Karabacak M.; Chand S.; Shukla V.K.; Sinha L.; Prasad O.; Singh M.P.; Asiri A.M.This study aims to identify the conformational and spectroscopic characteristics of 2,4-xylyl isothiocyanate (C9H9NS) compound via experimental and computational methods. To accomplish this, density functional theory (DFT), with the B3LYP functional was used to determine ground state conformation, vibrational wavenumbers and also isotropic chemical shifts of the title molecule. Experimentally, vibrational features of the compound were evaluated by FT-IR and FT-Raman spectroscopic analysis in the solid phase. On the basis of these studies, the conformational and spectroscopic behaviors of 2,4-xylyl isothiocyanate were interpreted. The fundamental vibrational wavenumbers as well as their intensities were computed, and a good correlation between experimental and scaled calculated wavenumbers was observed. The polarizability, first hyperpolarizability and dipole moment values of 2,4-xylyl isothiocyanate were calculated at the same level of theory and basis set. The results show that 2,4-xylyl isothiocyanate molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. ©2015 Elsevier B.V. All rights reserved.Öğe An experimental and theoretical investigation of Acenaphthene-5-boronic acid: Conformational study, NBO and NLO analysis, molecular structure and FT-IR, FT-Raman, NMR and UV spectra(Elsevier B.V., 2013) Karabacak M.; Sinha L.; Prasad O.; Asiri A.M.; Cinar M.The solid state Fourier transform infrared (FT-IR) and FT-Raman spectra of Acenaphthene-5-boronic acid (AN-5-BA), have been recorded in the range 4000-400 cm1 and 4000-10 cm 1, respectively. Density functional theory (DFT), with the B3LYP functional was used for the optimization of the ground state geometry and simulation of the infrared and Raman spectra of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes and the normal modes were assigned by a scaled quantum mechanical (SQM) force field approach. Hydrogen-bonded dimer of AN-5-BA, optimized by counterpoise correction, has also been studied by B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H·O hydrogen bonding have been discussed. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge-Including Atomic Orbital (GIAO) method. Natural bond orbital (NBO) analysis has been applied to study stability of the molecule arising from charge delocalization. UV spectrum of the title compound was also recorded and the electronic properties, such as frontier orbitals, and band gap energies were measured by TD-DFT approach. The first order hyperpolarizability (?), its components and associated properties such as average polarizability and anisotropy of the polarizability (? and ??) of AN-5-BA was calculated using the finite-field approach. © 2013 Elsevier B.V. All rights reserved.Öğe FT-IR, FT-Raman, NMR, UV and quantum chemical studies on monomeric and dimeric conformations of 3,5-dimethyl-4-methoxybenzoic acid(2014) Karabacak M.; Sinha L.; Prasad O.; Asiri A.M.; Cinar M.; Shukla V.K.Extensive spectroscopic investigations along with theoretical quantum chemical studies on 3,5-dimethyl-4-methoxybenzoic acid (DMMBA) have been consummated. The fundamental vibrational transitions were addressed by experimental FT-IR (4000-400 cm -1 ) and FT-Raman (4000-10 cm -1 ) techniques and density functional calculations at B3LYP/6-311++G(d,p) and B3LYP/6-311++G(df,pd) levels of theory. The 1 H, 13 C and DEPT 135 NMR spectra of studied compound were recorded in deuterated dimethylsulfoxide (DMSO -d6 ), and compared with computed data obtained by using gauge including atomic orbital (GIAO) method. The electronic absorption spectra in methanol and ethanol solution were evaluated in the range of 200-400 nm, and TD-DFT method was chosen for computational study. The spectroscopic and theoretical results were compared to the corresponding properties for monomer and dimer structures for the most stable conformer. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Moreover, the thermodynamic and nonlinear optical (NLO) properties were evaluated. © 2013 Elsevier B.V. All rights reserved.Öğe Molecular structure, electronic properties, NLO, NBO analysis and spectroscopic characterization of Gabapentin with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations(2013) Sinha L.; Karabacak M.; Narayan V.; Cinar M.; Prasad O.Gabapentin (GP), structurally related to the neurotransmitter GABA (gamma-aminobutyric acid), mimics the activity of GABA and is also widely used in neurology for the treatment of peripheral neuropathic pain. It exists in zwitterionic form in solid state. The present communication deals with the quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of GP using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. In view of the fact that amino acids exist as zwitterions as well as in the neutral form depending on the environment (solvent, pH, etc.), molecular properties of both the zwitterionic and neutral form of GP have been analyzed. The fundamental vibrational wavenumbers as well as their intensities were calculated and compared with experimental FT-IR and FT-Raman spectra. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The electric dipole moment, polarizability and the first hyperpolarizability values of the GP have been calculated at the same level of theory and basis set. The nonlinear optical (NLO) behavior of zwitterionic and neutral form has been compared. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. Ultraviolet-visible (UV-Vis) spectrum of the title molecule has also been calculated using TD-DFT method. The thermodynamic properties of both the zwitterionic and neutral form of GP at different temperatures have been calculated. © 2013 Elsevier B.V. All rights reserved.Öğe Spectral features, electric properties, NBO analysis and reactivity descriptors of 2-(2-Benzothiazolylthio)-Ethanol: Combined experimental and DFT studies(Elsevier, 2015) Srivastava R.; Sinha L.; Karabacak M.; Prasad O.; Pathak S.K.; Asiri A.M.; Cinar M.(Chemical Equation Presented). Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers, nuclear magnetic behaviors, electronic absorption spectra along with the nonlinear optical properties of 2-(2-benzothiazolylthio)-ethanol (BTZTE) were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) as basis set. The FT-IR and FT-Raman spectra were measuredinthe condensed state. The fundamental vibrational wavenumbers as well as their intensities were calculated, and a good correlation between experimental and scaled calculated wavenumbers was accomplished. The electric dipole moment, polarizability and the first hyperpolarizability values of the BTZTE were calculated at the same level of theory and basis set. The results show that the BTZTE molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. UV spectrum of the studied molecule was recorded in the region 200-500 nm and the electronic properties were predicted by time-dependent DFT approach. The calculated transition energies are in good concurrency with the experimental data. 1 H nuclear magnetic resonance (NMR) chemical shifts of the title molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The thermodynamic properties of the studied compound at different temperatures were calculated. Global and local reactivity descriptors were computed to predict reactivity and reactive sites on the molecule. © 2014 Elsevier B.V. All rights reserved.