Yazar "Sahni, Prashant" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Impact of different microwave treatments on food texture(Wiley, 2022) Kutlu, Naciye; Pandiselvam, Ravi; Saka, Irem; Kamiloglu, Aybike; Sahni, Prashant; Kothakota, AnjineyuluElectromagnetic waves are frequently used for food processing with commercial or domestic type microwave ovens at present. Microwaves cause molecular movement by the migration of ionic particles or rotation of dipolar particles. Considering the potential applications of microwave technique in food industry, it is seen that microwaves have many advantages such as saving time, better final product quality (more taste, color, and nutritional value), and rapid heat generation. Although microwave treatment used for food processing with developing technologies have a positive effect in terms of time, energy, or nutrient value, it is also very important to what extent they affect the textural properties of the food that they apply to. For this purpose, in this study, it has been investigated that the effects of commonly used microwave treatments such as drying, heating, baking, cooking, thawing, toasting, blanching, frying, and sterilization on the textural properties of food. In addition, this study has also covered the challenges of microwave treatments and future work. In conclusion, microwave treatments cause energy saving due to a short processing time. Therefore, it can be said that it affects the textural properties positively. However, it is important that the microwave processing conditions used are chosen appropriately for each food material.Öğe Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review(Elsevier, 2023) Pandiselvam, R.; Aydar, Alev Yuksel; Kutlu, Naciye; Aslam, Raouf; Sahni, Prashant; Mitharwal, Swati; Gavahian, MohsenOne of the earliest and most prevalent processing methods to increase the shelf-life of foods is drying. In recent years, there has been an increased demand to improve product quality while lowering processing times, ex-penses, and energy usage in the drying process. Pre-treatments are therefore effectively used before drying to enhance heat and mass transfer, increase drying efficiency, and lessen degradation of final product quality. When food is dried, changes are expected in its taste, color, texture, and physical, chemical, and microbial properties. This has led to the need for research and development into the creation of new and effective pre-treatment technologies including high-pressure processing, pulsed electric field, ultraviolet irradiation, and ultrasound. Sound waves that have a frequency >20 kHz, which is above the upper limit of the audible frequency range, are referred to as ultrasound. Ultrasonication (US) is a non-thermal technology, that has mechanical, cavitational, and sponge effects on food materials. Ultrasound pre-treatment enhances the drying characteristics by producing microchannels in the food tissue, facilitating internal moisture diffusion in the finished product, and lowering the barrier to water migration. The goal of ultrasound pre-treatment is to save processing time, conserve energy, and enhance the quality, safety, and shelf-life of food products. This study presents a comprehensive overview of the fundamentals of ultrasound, its mechanism, and how the individual effects of ultrasonic pre-treatment and the interactive effects of ultrasound-assisted technologies affect the drying kinetics, bioactive components, color, textural, and sensory qualities of food. The difficulties that can arise when using ultrasound technology as a drying pretreatment approach, such as inadequate management of heat, the employment of ultrasound at a limited frequency, and the generation of free radicals, have also been explained.