Yazar "Tataroglu, Adem" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Current voltage analyses of Graphene-based structure onto Al2O3/p-Si using various methods(Pergamon-Elsevier Science Ltd, 2020) Efil, Esra; Kaymak, Nuriye; Seven, Elanur; Orhan, Elif Oz; Bayram, Ozkan; Ocak, Sema Bilge; Tataroglu, AdemThe present study's main purpose is to determine the current-voltage (I-V) performance of Graphene (Gr) based hetero nanostructure produced on Al2O3/p-Si. Graphene synthesis was carried out using the chemical vapor deposition (CVD) technique on Copper (Cu) foils used as a metal catalyst and transferred onto Al2O3/p-Si using the conventional transfer method. The I-V characteristics of this structure were measured in the dark environment, and the electrical properties of the Gr/Si structure were characterized at room temperature. The rectifying ratio (RR) of the structure was found to be about 103 at +/- 3 V. The electrical properties of ideality factor (n), series resistance (R-S), and barrier height (Phi(b)) were examined by using the theory of Thermionic Emission (TE), Norde's method, and Cheung's method. The values of Phi(b), which were calculated using Norde's method, Cheung's method, and the theory of thermionic emission (TE), were found to be 0.69 eV, 0.71 eV, and 0.68 eV, respectively. The ideality factor was found to be approximately 3.89 according to the theory of TE. The values of series resistance were also determined using the Norde's method and Cheung's two different parameters (dV/dln (I) and H(I)) found to be 9.60 k Omega, 9.12 k Omega, and 5.94 k Omega, respectively.Öğe Double-exponential current-voltage (I-V) behavior of bilayer graphene-based Schottky diode(Iop Publishing Ltd, 2021) Kutluoglu, Esra Efil; Orhan, Elif Oz; Tataroglu, Adem; Bayram, OzkanResearches on layered materials such as graphene have attracted lots of attention recently. It has been shown that these materials have make a junction with many semiconductor materials that behave like Schottky diodes and have rectifying characteristics. The comprehension of its fabrication process and properties are a critical need toward graphene-based integrated electronics. The purpose of this study is to find out the current-voltage (I-V) performance of Bilayer Graphene (BLGr) based heterostructure fabricated on Al2O3/p-Si, and the effect of BLGr on diode parameters. Graphene has been grown on copper (Cu) foil by Chemical Vapor Deposition (CVD) method and transferred onto Al2O3/p-Si by using the polymethyl methacrylate (PMMA) wet transfer method. Raman analysis has been performed to obtain supportive information about CVD synthesized graphene film. The I-V plot of the diode exhibited two linear regions named Region 1 (0.08-0.19 V) and Region 2 (0.21-0.40 V). The double-exponential I-V behavior of the diode has been analyzed. The diode characteristics such as barrier height (phi(B0)), series resistance (R-s), and ideality factor (n) have been calculated by using thermionic emission (TE), Norde, and Cheung methods. Especially, the values of the barrier height were compared with one another. It was found that they are in good agreement. Additionally, current conduction mechanisms of the diode were investigated using the forward bias ln(I) versus ln (V) plot. At lower and higher forward bias regions, the conduction mechanisms were determined as ohmic behavior and trap charge limiting current mechanism (TCLC), respectively.Öğe Electrical properties of Graphene/Silicon structure with Al2O3 interlayer(Springer, 2020) Kaymak, Nuriye; Bayram, Ozkan; Tataroglu, Adem; Ocak, Sema Bilge; Orhan, Elif OzThe electrical properties of the fabricated Al/Gr/Al2O3/p-Si structure have been analyzed using frequency-dependent capacitance/conductance-voltage (C/G-V) measurements. Graphene (Gr) nanosheets were grown on to copper (Cu) catalyst substrate, which has 99.99% purity, by Chemical Vapor Deposition (CVD) technique, and then the Graphene was transferred on -Al2O3/p-Si by the standard transfer process. The Graphene structures have been characterized by Raman Spectroscopy and Transmission Electron Microscopy (TEM) analyses, and the results of both analyses confirmed the monolayer/bilayer Graphene nanostructure. The forward and reverse bias G- V and C-V measurements of this structure have been performed in 10 kHz-400 kHz and at 300 K. The frequency dispersion in C and G can be evaluated for interface state density ( D it) and series resistance ( R s) values. The values of D it and R s are dependent on frequency and increase with decreasing frequency. The R s - V graph shows a peak form at all frequencies in the depletion region and vanishes with increasing frequency. The obtained results suggest that the prepared structure can be used in electronic device applications.