Yazar "Tozlu A." seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Thermodynamic performance assessment of different fluids in a typical organic Rankine cycle for usage in municipal solid waste power plant(Polish Academy of Sciences, 2017) Özahi E.; Tozlu A.; Abuşoğlu, AyşegülThis paper presents the energy and exergy analyses of some different organic fluids which can be used in an organic Rankine cycle adapted to a municipal solid waste power plant in the frame of energy recovery. The novelty of the study is to adapt a well-known organic Rankine cycle system theoretically to the existing municipal solid waste power plant where the exhaust gas with a temperature of almost 560 °C is sent to atmosphere causing both energy loss and air pollution, and also violating the related legislation. The efficient organic fluid that can be used in such a plant is estimated by means of the thermodynamic analyses. It is known that, in a typical municipal solid waste power plant, a considerable amount of energy is sent up from a plant chimney to the atmosphere. This waste energy can be utilized by using an adapted organic Rankine cycle system with a proper organic fluid. In this frame, some different organic fluids were examined and compared thermodynamically in this study. The optimal operation conditions of some organic fluids, R141b, isobutane, R245fa, n-pentane and n-hexane have been evaluated by means of ASPEN and EES software programs. The effects of the outlet temperature of heat source on the energetic and exergetic efficiencies and the net power output at a given pinch point temperature difference were investigated. It can be deduced from the analyses that n-hexane has the highest energetic and exergetic efficiencies at all outlet temperatures of the heat source such as 8.92% and 34.47% at 82.08°C, respectively. It can also be stated that the maximum net power output is obtained by using the organic fluid n-hexane.Öğe Thermoeconomic analysis and assessment of Gaziantep municipal solid waste power plant(Polish Academy of Sciences, 2017) Tozlu A.; Abuşoğlu, Ayşegül; Özahi E.This paper presents a thermoeconomic analysis and assessment of a municipal solid waste power plant system in Gaziantep. The operation of an existing municipal solid waste power plant is described in detail and a thermoeconomical methodology based on exergoeconomic relations and specific exergy costing (SPECO) method is provided to allocate cost flows through subcomponents of the plant. SPECO method is based on a step by step procedure which begins from identification of energy and exergy values of all states defined in the present system through fuel (F) and product (P) approach and ends at the point of establishing related exergy based cost balance equations together with auxiliary equations. The actual exergy efficiency of the solid waste power plant is determined to be 47.84% which shows that 52.16% of the total exergy input to the plant is destroyed. The net electrical power output of the Gaziantep municipal solid waste power plant is 5.655 MW. The total cost rate of the power plant is evaluated as 18.44$/h as a result of thermoeconomic analyses.Öğe Thermoeconomic analysis and optimization of a Re-compression supercritical CO2 cycle using waste heat of Gaziantep Municipal Solid Waste Power Plant(Elsevier Ltd, 2018) Tozlu A.; Abuşoğlu, Ayşegül; Özahi E.This paper presents thermodynamic and thermoeconomic analyses as well as optimization of a re-compression supercritical CO2 cycle. A gas turbine cycle (GT) is adapted as a model to an existing plant to generate additional power in Gaziantep Municipal Solid Waste Power Plant (GMSWPP). The total capital cost rate and total cost rate of the GT cycle are found to be 20.47 $/h and 77.14 $/h, respectively utilizing SPECO by using the exhaust gas of 16 kg/s with 1.9 bar and 566.7 °c. The net power, the energy and exergy efficiencies, the total cost and the total capital cost rates of the GT cycle are optimized by +1.73%, +3.21%, +2.45%, ?1.11% and ?1.64%, respectively using NSGA-II in MATLAB in the range of 2.5?PR?4, 200?P6?216, 16?T0?23 and 9.1?LMTD?12.9. This paper provides an originality such that optimization as well as thermodynamic and thermoeconomic analyses is performed simultaneously for an existing MSW power plant, which can be stressed that there are scarce amounts of studies related on this field. Moreover, as another novelty, it can be emphasized that net power output of such like plants which have similar capacity can be improved using the developed model and NSGA-II optimization method. © 2017 Elsevier LtdÖğe Thermoeconomic multi-objective optimization of an organic Rankine cycle (ORC) adapted to an existing solid waste power plant(Elsevier Ltd, 2018) Özahi E.; Tozlu A.; Abuşoğlu A.In this paper, thermodynamic and thermoeconomic analyses, and also optimization of an organic Rankine cycle (ORC) were performed. The system was adapted to an existing solid waste power plant with a 5.66 MW installed power capacity in order to produce additional power from the exhaust gas. The actual operating data of the plant were utilized during all stages of the analyses. The originality of this paper is based on the analysis of the possibility of the energy conversion of an exhaust gas with a temperature of 566 & #x000B0;C into the electricity by utilizing an ORC system in the concept of waste-to-energy. Four different working fluids: toluene, octamethyltrisiloxane (MDM), octamethyl cyclotetrasiloxane (D4) and n-decane were considered and analyzed for the current system. This is also another novelty of this study due to lack of such a study, in the open literature, that deals with an ORC utilized for a typical municipal solid waste power plant. According to the thermoeconomic analyses, toluene was found to be the optimum working fluid with the maximum power output of 584.6 kW and the exergy efficiency of 15.69%. The optimization of the cycle was performed by using the non-dominated sorting genetic algorithm method (NSGA-II) in MATLAB software environment. The optimization results were compared and the deviations of the net power output and the total cost rate were evaluated as & #x2212;5.89%, & #x2212;3.51 & #x00024;/h for toluene; 0.96%, & #x2212;3.60 & #x00024;/h for MDM; 8.45%, & #x2212;2.04 & #x00024;/h for D4 and 2.00%, & #x2212;5.54 & #x00024;/h for n-decane, respectively. © 2018 Elsevier Ltd