Yazar "Yilmaz, Asuman Gunay" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Face presentation attack detection performances of facial regions with multi-block LBP features(Springer, 2023) Yilmaz, Asuman Gunay; Turhal, Ugur; Nabiyev, VasifBiometric recognition systems are frequently used in daily life although they are vulnerable to attacks. Today, especially the increasing use of face authentication systems has made these systems the target of face presentation attacks (FPA). This has increased the need for sensitive systems detecting the FPAs. Recently surgical masks, frequently used due to the pandemic, directly affect the performance of face recognition systems. Researchers design face recognition systems only from the eye region. This motivated us to evaluate the FPA detection performance of the eye region. Based on this, in cases where the whole face is not visible, the FPA detection performance of other parts of the face has also been examined. Therefore, in this study, FPA detection performances of facial regions of wide face, cropped face, eyes, nose, and mouth was investigated. For this purpose, the facial regions were determined and normalized, and texture features were extracted using powerful texture descriptor local binary patterns (LBP) due to its easy computability and low processing complexity. Multi-block LBP features are used to obtain more detailed texture information. Generally uniform LBP patterns are used for feature extraction in the literature. In this study, the FPA detection performances of both uniform LBP patterns and all LBP patterns were investigated. The size of feature vector is reduced by principal component analysis, and real/fake classification is performed with support vector machines. Experimental results on NUAA, CASIA, REPLAY-ATTACK and OULU-NPU datasets show that the use of all patterns increased the performance of FPA detection.Öğe A new face presentation attack detection method based on face-weighted multi-color multi-level texture features(Springer, 2024) Turhal, Ugur; Yilmaz, Asuman Gunay; Nabiyev, VasifBiometric data (facial, voice, fingerprint, and retinal scans, for example) are widely used in identification due to their unique and irreversible nature. Facial recognition technologies are employed in a wide range of applications due to their contactless nature and convenience. However, technological advancements and the availability of access to personal information have rendered these biometric systems susceptible to attacks utilizing fake faces. As a result, the issue of anti-spoofing has emerged as a critical one in the field of facial recognition. This study proposes a joint face presentation attack (FPA) detection method based on face-weighted multi-color multi-level LBP features extracted from the combination of device-dependent HSV and device-independent L*a*b* color spaces. The facial images were converted to HSV and L*a*b* color spaces. Three levels of regional LBP features were extracted from each color channel and then concatenated. Finally, a Multi-Color Multi-Level LBP (MCML_LBP) feature vector was obtained. In addition, the Face Weighted MCML_LBP feature vector was produced (FW_MCML_LBP) by adding the LBP histogram extracted from the central region of the normalized image. The feature vectors are used to train an SVM classifier after reducing their size using PCA. Twenty-five different test scenarios were subjected to experimentation on the CASIA and Replay-Attack databases. 2.11% EER and 0.19% HTER were achieved on CASIA (Overall) and Replay-Attack (Grandtest) databases, respectively, using the L*a*b color space and the proposed feature extraction method. The results of the study showed that the proposed method was successful in FPA detection compared to the state-of-the-art methods.