Yazar "Yilmaz, F." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Gamma-ray and neutron shielding capability of blended cement-stabilized barite fillers developed by maximum density method(Pergamon-Elsevier Science Ltd, 2023) Gokce, H. S.; Oksuzer, N.; Kamiloglu, H. A.; Yilmaz, F.The disposal of radiological wastes in the deep geological repositories has become an important issue for the reduction of hazardous risks on the human and biological environments. In this study, blended cement-stabilized barite fillers against gamma rays and neutrons have been developed with the use of the maximum density method by considering various amounts of water (100-300 kg/m3), binder (4-10%), and compaction energy (500-2000 kJ/m3). According to the experimental series of these filler materials, satisfactory response surface results have been achieved in the study. The experimental results revealed that compacted filling material can ensure an efficient shielding capability for gamma rays and neutrons when designed with a density of 3.064 g/ cm3. An increase in binder content, water content, and compaction energy has improved the compressive strength of these materials up to 37 times according to that of the poorest series. Neutron and gamma-ray shielding capabilities were found to be 119 and 14% higher than those of the poorest filler material, respec-tively when theoretical and experimental results are considered in the study.Öğe The Toughness of Polypropylene Fiber-Reinforced Foam Concrete under Various Uni- and Tri-Axial Compression Loads(Korean Society Of Civil Engineers-Ksce, 2023) Gokce, H. S.; Oksuzer, N.; Kamiloglu, H. A.; Eyuboglu, M.; Yilmaz, F.Foam concrete has recently become a key construction material in terms of meeting the special needs of modern engineering applications such as thermal insulation, absorption of static and dynamic loads. In this study, the effect of polypropylene fiber content and various uni- and tri-axial compression loads on the toughness response of polypropylene fiber-reinforced foam concrete was investigated. Up to a certain strain level (0.1 mm/mm), the ultimate compression stress of specimens under uni- and tri-axial loading increased from about 1 MPa to 16 MPa with the increased target densities of foam concrete. There was a strain-hardening capability of low-density foam concrete while the specimens failed by strain-softening in the high-density series. The optimum fiber amounts were found to be 3.9%, 4.6%, and 6.4% for low, medium, and high target densities of foam concrete, respectively. At low-density series, the bubbles were observed to be relatively bigger and mostly merged with each other. A reduction in foam content (vice versa, increasing target density of mixture) and the presence of fiber resulted in smaller pore size and a more homogenous distribution of them in the matrix. In conclusion, the desired pore structure and efficient bridging of fibers in the matrix allowed the production of favorable foam concrete with higher toughness.