Hydrodynamic characterisation of chitosan and its interaction with two polyanions: DNA and xanthan

dc.authorid0000-0002-2150-2726en_US
dc.contributor.authorAlmutairi, F., Erten, T., Adams G.G., Hayes, M., McLoughlin P., Kök, M.Ş., Mackie, A.R.,Rowe, A., Harding, S.E.
dc.date.accessioned2020-12-04T09:40:42Z
dc.date.available2020-12-04T09:40:42Z
dc.date.issued2015en_US
dc.departmentFakülteler, Sağlık Bilimleri Fakültesi, Beslenme ve Diyetetik Bölümüen_US
dc.description.abstractChitosan, a soluble polycationic derivative of insoluble chitin, has been widely considered for use in the food, cosmetic and pharmaceutical industries. Commercial (“C”) and in-house laboratory (“L”) prepared chitosan samples extracted from crustaceous shells with different molecular weight and degrees of acetylation (25% and 15%) were compared with regards to (i) weight–average molecular weight (Mw); (ii) sedimentation coefficient (so20,w) distribution, and (iii) intrinsic viscosity ([η]). These parameters were estimated using a combination of analytical ultracentrifugation (AUC), size exclusion chromatography coupled to multi-angle laser light scattering (SEC–MALS) and differential pressure viscometry. Polydisperse distributions were seen from sedimentation coefficient distributions and elution profiles from SEC–MALS. Mw values obtained for each sample by sedimentation equilibrium measurements were in excellent agreement with those obtained from SEC–MALS. Mark–Houwink–Kuhn–Sakurada (MHKS) and Wales van Holde analyses of the data all suggest a semi-flexible conformation. The principle of co-sedimentation was then used to monitor the interactions of the two different molecular weights of L chitosans with two polyanions, DNA and xanthan (another double helical high molecular weight molecule). Interactions were clearly observed and then quantified from the changes in the sedimentation coefficient distribution of the mixture compared to unmixed controls using sedimentation velocity. The interactions appeared to show a strong dependence on molecular weight. The relevance of this for DNA condensation applications is indicated.en_US
dc.description.sponsorshipTurkish Ministry of National Educationen_US
dc.identifier.doi10.1016/j.carbpol.2014.09.090
dc.identifier.endpage366en_US
dc.identifier.issue122en_US
dc.identifier.startpage359en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12403/2283
dc.institutionauthorErten, Tayyibe
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofCarbohydrate Polymersen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSedimentation distribution, flexibility, co-sedimentation, double helix, multi-Gaussian fiten_US
dc.titleHydrodynamic characterisation of chitosan and its interaction with two polyanions: DNA and xanthanen_US
dc.typeArticleen_US

Dosyalar

Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: