Yazar "Abusoglu, Aysegul" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comparative thermoeconomic analysis and optimization of two different combined cycles by utilizing waste heat source of an MSWPP(Pergamon-Elsevier Science Ltd, 2021) Ozahi, Emrah; Abusoglu, Aysegul; Tozlu, AlperenIn this paper, thermodynamic and thermoeconomic analysis as well as genetic algorithm optimization of two combined cycles, a gas turbine-organic Rankine cycle (GT-ORC) and a gas turbine-Kalina cycle (GT-KAL) are carried out. The novelty of this study is that the cycles are adapted to an actual solid waste power plant to generate additional power from the exhaust gas. Thus, the power generation capacity of the actual power plant can be raised by using the combined cycle. Due to this reason, besides the thermodynamic analysis of the cycles, thermoeconomic analyses and optimizations are also very important in order to improve the actual system capacity. The net power output of GT-ORC and GT-KAL are found to be 1.51 MW and 1.59 MW, respectively. The results obtained are seen to be reasonable when compared to the net power output of the power plant (5.66 MW). Another originality of this study is that the thermoeconomic results are improved by utilizing a multi-objective optimization method namely non-dominated sorting genetic algorithm method (NSGA-II). Thus, the two objectives, total power output and the total cost rate, at the design stage of the cycles are optimized and enhanced. Due to the optimization results, it is found that the net power output of the GT-ORC and GT-KAL are increased by 11.34% and 0.99%, respectively, while the total cost rates are decreased by 18.59% and 1.31%, respectively. GTORC with the net power output of 1.70 MW is seen to be more efficient as compared to GT-KAL which produces a net power output of 1.61 MW. However, the total and the capital cost rates of GT-ORC are found to be higher than those of GT-KAL.Öğe District heating and electricity production based on biogas produced from municipal WWTPs in Turkey: A comprehensive case study(Pergamon-Elsevier Science Ltd, 2021) Abusoglu, Aysegul; Tozlu, Alperen; Anvari-Moghaddam, AmjadIn this paper, district heating (DH) potentials of the wastewater treatment plants (WWTPs) based on their biogas, electricity, and heat productions are considered. Two district heating scenarios are developed: (i) DH Scenario I which is based on both excess biogas storage of the WWTP and exhaust gas of the cogeneration with the actual power output, (ii) DH Scenario II which is based on the exhaust gas of the cogeneration with the increased power output using all the biogas produced. In DH Scenario I, it is found that 458 dwellings can be heated via the DH system proposed considering only the waste heat of the cogeneration. In addition, the natural gas consumption of 1112 dwellings with the same annual heating load can also be met using the purified biogas. In DH Scenario II, the electricity production could be increased to 1643 kWh by burning all the biogas produced in the cogeneration plant. In this scenario, the annual heating load of 755 dwellings in Gaziantep province can be covered using the waste heat in the DH system. The payback period for the DH Scenario I is calculated as 2.5 years, while for the DH Scenario II, it is obtained as 2 years. (c) 2021 Elsevier Ltd. All rights reserved.Öğe Municipal solid waste-based district heating and electricity production: A case study(Elsevier Sci Ltd, 2021) Tozlu, Alperen; Abusoglu, Aysegul; Ozahi, Emrah; Anvari-Moghaddam, AmjadIn this paper, municipal solid waste (MSW) based electricity production and district heating (DH) potential of Turkey are considered. Three MSW based waste-to-energy (WtE) scenarios is developed: (i) Scenario-I, a DH system integrated into a gas turbine power plant (GTPP), (ii) Scenario-II, a DH system integrated into an organic Rankine cycle (ORC), and (iii) Scenario-III, which is based solely on a DH system. As a result of the thermodynamic and thermoeconomic analyzes of these developed scenarios using an existing MSW-based cogeneration facility's actual operating data, the system with the most extended payback period (about 5 years) is found as the GTPP-DH system developed in Scenario-I, which also has the highest investment cost. On the other hand, the system with the shortest payback period (about 2 years) is found as the DH system developed in Scenario-III, which also has the lowest investment cost. Overall exergy efficiencies of the GTTP-DH, ORC-DH, and DH systems are found to be 41.86%, 16.15%, and 31.87%, respectively. When the developed WtE scenarios adapted to the pilot provinces selected from each geographical region of Turkey, it is found that the GTPP system developed in Scenario-I can increase the power generation capacity of MSW plants for each province by about 20%. (C) 2021 Elsevier Ltd. All rights reserved.Öğe An Updated Portrait of Numerical Analyses on Spout-Fluidized Bed Incineration Systems(Springer International Publishing Ag, 2020) Ozahi, Emrah; Cutay, Arif; Abusoglu, Aysegul; Tozlu, AlperenBiodegradable wastes are becoming a serious problem in terms of health and ecological balance in parallel with the increasing of local and global populations in recent years. These wastes should be disposed in both efficient and eco-friendly ways. Considering biodegradable wastes as an energy source, it is necessary to be sure that those disposal methods should be focused on energy recovery. However, the existing waste disposal methods have not reached technologically targeted lines yet. It is very important that waste-to-energy recovery systems should have high energy conversion efficiency. Nowadays, there are many current studies based on the methods of wastes incineration. One of the most significant among these systems is fluidized or spout-fluidized bed incineration system. Unfortunately, the targeted points of the technological development of these systems in view of efficient energy recovery have not been reached yet. Existing incineration systems and current studies on this issue are generally concentrated on conventional fluidized bed systems. However, there are few studies of new generation spout-fluidized bed incineration systems which increase homogeneity and prevent waste from adhering to inner wall of a combustor. This study is focused on the conducted numerical studies in this research field. The latest developments and researches on both fluidized and spout-fluidized bed incineration systems will be investigated and discussed. The remarkable results will be pointed out by using the comparison in order to identify the gaps of the scientific literature.