Yazar "Guney H." seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of doping concentration on the structural and optical properties of nanostructured Cu-doped Mn3O4 films obtained by SILAR technique(Springer Verlag, 2018) Bayram O.; Guney H.; Ertargin M.E.; Igman E.; Simsek O.In this study, the effect of Cu doping on the optical, structural and wettability properties of the nanostructured Cu-doped Mn3O4 (CMO) thin films obtained by using successive ionic layer adsorption and reaction technique was systematically investigated. The optical, morphological, structural and wettability properties of the nanostructured CMO films were determined using scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–Vis spectroscopy, and water contact angle (WCA) measurements. There were significant differences in the crystal structure of the nanostructured CMO thin films. The Cu doping disrupted this structure of pure (undoped) Mn3O4 films and caused the formation of the porous structure. Optical properties such as extinction coefficient, refractive index, and dielectric constants and optical band gap, were determined for nanostructured CMO films. Compared with pure films, the band gap of Cu-doped films decreased from 2.06 to 1.71 eV with increasing Cu concentration. The dielectric constants of the films showed that the nanostructured CMO films have a transparent structure. At 300 nm wavelength, the dielectric constants of pure Mn3O4 films were 2.22 while the calculated dielectric constants at increasing doping concentrations were 3.55, 2.41 and 2.25. It was also found from the WCA measurements that the thin films were hydrophilic in character and the WCA values for the nanostructured CMO thin films were measured as 24, 29 and 40 of degree. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.Öğe Effect of the number of cycles on the optical and structural properties of Mn3O4 nanostructures obtained by SILAR technique(Springer New York LLC, 2018) Bayram O.; Simsek O.; Guney H.; Igman E.; Murat Ozer M.In this study, nanostructured Mn3O4 (manganese oxide) thin films were successfully obtained by successive ionic layer adsorption and reaction (SILAR) method on the soda lime glass substrates using Manganese Nitrate (Mn(NO3)2) and Ammonium hydroxide (NH4(OH)) as cationic and anionic precursors respectively. Structural and morphological characterizations of the Mn3O4 films obtained at different cycles were determined using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The crystal structure of the thin films were also confirmed by RAMAN spectroscopy. Optical properties such as absorption, transmission, reflection, extinction coefficient and optical band gap of nanostructured Mn3O4 thin films were determined by UV–Vis spectroscopy. SEM images showed that the manganese oxide nanosheets formed uniformly on substrate surface. As the deposition cycles increased, nano-sheets structure deteriorated. The optical band gap of Mn3O4 thin films varied from 2.12 to 2.59 eV, depending on the increase in number of cycles. From contact angle measurements of thin films, it was determined that thin films had hydrophilic character. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.Öğe The role of cobalt doping on the optical and structural properties of Mn 3 O 4 nanostructured thin films obtained by SILAR technique(Academic Press, 2019) Özkan, Bayram; İgman E.; Guney H.; Simsek O.Cobalt doped manganese oxide thin films (Mn 3 O 4 :Co) were successfully deposited on soda lime glass substrates using SILAR technique. Mn 3 O 4 :Co thin films were characterized using XRD, SEM, Uv–VIS and Raman spectroscopy. The XRD spectra showed that thin films had substantially Hausmannite crystal structure. The preferential orientation of the pure and 0.5 at.% Co doped manganese oxide thin films (Mn 3 O 4 ) was (002), but with increasing Co doping, it was detected that this preferential orientation shift towards the (211) plane. The absorbance, transmittance and optical band gap of the Mn 3 O 4 :Co thin films were determined using Uv–Vis spectroscopy and these properties of the thin films differed considerably due to cobalt doping. The optical band gap of pure Mn 3 O 4 thin films was 2.00 eV, but on the other hand, due to the Co doping this value increased before and then decreased slightly. Optical transmittance of Mn 3 O 4 :Co films increased from 60% to 72% with the effect of Co doping. A1g mode, which is the characteristic vibration peak of Mn 3 O 4 films, was confirmed for pure and doped Mn 3 O 4 thin films at a wavelength of 658 nm. © 2019 Elsevier LtdÖğe Synthesis and characterization of Zn-doped Mn3O4 thin films using successive ionic layer adsorption and reaction technique: Its structural, optical and wettability properties(Springer New York LLC, 2018) Bayram O.; Ertargin M.E.; Igman E.; Guney H.; Simsek O.In this study, it is aimed to obtain Zn doped Mn3O4 (manganese oxide) nanostructured thin films on the soda lime glass substrates by successive ionic layer adsorption and reaction technique. The tetragonal crystal structure of the all thin films was detected using XRD spectroscopy. The average crystallite size of undoped Mn3O4 thin films was calculated to be 29 nm and for Zn-doped thin films, this value decreased to 23 nm with increasing Zn concentration. Characteristic peaks for thin films were also confirmed by RAMAN spectroscopy. The morphological structures of zinc-doped manganese oxide nano-sheets thin films were revealed by SEM. Using UV–Vis spectroscopy, it was found that the optical band gap of Mn3O4 thin films decreased from 2.05 to 1.73 eV with Zn doping. It has also been understood from the wettability analyzes of thin films that all thin films have a hydrophilic character. From all these analyzes, it is thought that the Zn doped Mn3O4 thin films have the potential to be used in supercapacitor applications. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.