Yazar "Igman, Erdal" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Graphene/polyaniline nanocomposite as platinum-free counter electrode material for dye-sensitized solar cell: its fabrication and photovoltaic performance(Springer, 2020) Bayram, Ozkan; Igman, Erdal; Guney, Harun; Demir, Zeynep; Yurtcan, Mustafa Tolga; Cirak, Cagri; Hasar, Ugur CemIn this study, it was aimed to produce graphene/polyaniline nanocomposite thin films as counter electrode materials by PECVD system and to determine the photovoltaic performances of these counter electrodes in dye-sensitized solar cells (DSSCs). Graphene/polyaniline counter electrode (GPCE) material was produced in two different steps. Firstly, a single-layer and multilayer graphene thin films were produced on the fluorine-doped tinoxide (FTO) substrates. Then, polyaniline (PANI) thin films were grown on each graphene thin films using plasma polymerization technique, and eventually the production of the graphene/PANI nanocomposite was completed. The fabricated graphene/PANI nanocomposites were used in place of platinum (Pt)-counter electrode which is widely used in DSSCs and the photovoltaic performance of these counter electrodes was investigated. The DSSCs consisted of titanium dioxide (TiO2) nanotube photoanode, N719 dye, iodolyte liquid electrolyte, and graphene/PANI nanocomposite counter electrode. I-V measurements were carried out in order to calculated photoconversion efficiency (PCE) and it was found that the these efficiency of GPCEs changed between 0.56 and 1.36% according to the number of graphene layers. The photovoltaic performance of DSSC, consisting of TiO2 nanotube photoanode and Pt-counter electrode was 1.1%.Öğe Photovoltaic performance of non-covalent functionalized single-layer graphene in dye-sensitized solar cells (DSSCs)(Springer, 2021) Igman, Erdal; Bayram, Ozkan; Mavi, Ahmet; Hasar, Ugur Cem; Simsek, OnderIn this study, it was aimed to fabricate new effective alternative counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). For this purpose, firstly, single-layer graphene (SLG) thin films were grown by chemical vapor deposition (CVD) method. Then, these films were separately functionalized with 1,8-cineole (ppCin/SLG), D-Limonene (ppLim/SLG) and Thiophene (ppTh/SLG) by plasma polymerization. Number of layers in CVD-grown graphene determined by Raman, transmission electron microscope (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. Chemical structures of plasma polymerised (pp) thin films were investigated by Fourier transform infrared (FTIR) spectroscopy. Photovoltaic parameters of DSSCs were calculated, and electrocatalytic properties of CEs were investigated by electrochemical impedance spectroscopy (EIS). Polymer functionalization greatly enhanced the electrical conductivity and electrocatalytic activity properties of graphene compared to that of SLG. The efficiencies of DSSCs with ppCin/SLG and ppLim/SLG CEs were 1.10% and 1.02%, respectively. As a result, the cell efficiencies of ppCin/SLG and ppLim/SLG could be as alternative materials to platinum (Pt) counter electrode.