Photovoltaic performance of non-covalent functionalized single-layer graphene in dye-sensitized solar cells (DSSCs)

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, it was aimed to fabricate new effective alternative counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). For this purpose, firstly, single-layer graphene (SLG) thin films were grown by chemical vapor deposition (CVD) method. Then, these films were separately functionalized with 1,8-cineole (ppCin/SLG), D-Limonene (ppLim/SLG) and Thiophene (ppTh/SLG) by plasma polymerization. Number of layers in CVD-grown graphene determined by Raman, transmission electron microscope (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. Chemical structures of plasma polymerised (pp) thin films were investigated by Fourier transform infrared (FTIR) spectroscopy. Photovoltaic parameters of DSSCs were calculated, and electrocatalytic properties of CEs were investigated by electrochemical impedance spectroscopy (EIS). Polymer functionalization greatly enhanced the electrical conductivity and electrocatalytic activity properties of graphene compared to that of SLG. The efficiencies of DSSCs with ppCin/SLG and ppLim/SLG CEs were 1.10% and 1.02%, respectively. As a result, the cell efficiencies of ppCin/SLG and ppLim/SLG could be as alternative materials to platinum (Pt) counter electrode.

Açıklama

Anahtar Kelimeler

Rf Plasma Polymerization, Counter Electrodes, Thin-Films, Conducting-Polymer, Transparent, Deposition, Oil, Efficiency, Nanotubes, Sheets

Kaynak

Journal of Materials Science

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

56

Sayı

6

Künye