Yazar "Le Gall G." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Structural analysis of the ?-D-glucan produced by the sourdough isolate Lactobacillus brevis E25(Elsevier Ltd, 2018) Dertli E.; Colquhoun I.J.; Côté G.L.; Le Gall G.; Narbad A.Cereal-associated Lactic Acid Bacteria (LAB) are well known for homopolymeric exopolysaccharide (EPS) production. Herein, the structure of an EPS isolated from sourdough isolate Lactobacillus brevis E25 was determined. A modified BHI medium was used for production of EPS-E25 in order to eliminate potential contaminants. Analysis of sugar monomers in EPS revealed that glucose was the only sugar present. Structural characterisation of EPS by NMR and methylation analysis revealed that E25 produced a highly branched ?-glucan with (?1 ? 3) and (?1 ? 6) glycosidic linkages, and was similar in structure to a previously reported EPS from Lactobacillus reuteri 180. The 1H and 13C NMR data were contrasted with newly recorded data for known polysaccharides (alternan, commercial dextran) which also contain ?-(1,3,6)Glc branch points. It was found in both E25 EPS and alternan that NMR parameters could be used to distinguish glucose residues that had the same substitution pattern but occupied different positions in the structure. © 2017 Elsevier LtdÖğe Structure and biosynthesis of two exopolysaccharides produced by lactobacillus johnsonii FI9785(2013) Dertli E.; Colquhoun I.J.; Gunning A.P.; Bongaerts R.J.; Le Gall G.; Bonev B.B.; Mayer M.J.; Narbad A.Exopolysaccharides were isolated and purified from Lactobacillus johnsonii FI9785, which has previously been shown to act as a competitive exclusion agent to control Clostridium perfringens in poultry. Structural analysis by NMR spectroscopy revealed that L. johnsonii FI9785 can produce two types of exopolysaccharide: EPS-1 is a branched dextran with the unusual feature that every backbone residue is substituted with a 2-linked glucose unit, and EPS-2 was shown to have a repeating unit with the following structure: -6)-?-Glcp-(1-3)-?-Glcp-(1-5)-?-Galf-(1-6)-?-Glcp-(1-4) -?-Gal p-(1-4)-?-Glcp-(1-. Sites on both polysaccharides were partially occupied by substituent groups: 1-phosphoglycerol and O-acetyl groups in EPS-1 and a single O-acetyl group in EPS-2. Analysis of a deletion mutant (?epsE) lacking the putative priming glycosyltransferase gene located within a predicted eps gene cluster revealed that the mutant could produce EPS-1 but not EPS-2, indicating that epsE is essential for the biosynthesis of EPS-2. Atomic force microscopy confirmed the localization of galactose residues on the exterior of wild type cells and their absence in the ?epsE mutant. EPS2 was found to adopt a random coil structural conformation. Deletion of the entire 14-kb eps cluster resulted in an acapsular mutant phenotype that was not able to produce either EPS-2 or EPS-1. Alterations in the cell surface properties of the EPS-specific mutants were demonstrated by differences in binding of an anti-wild type L. johnsonii antibody. These findings provide insights into the biosynthesis and structures of novel exopolysaccharides produced by L. johnsonii FI9785, which are likely to play an important role in biofilm formation, protection against harsh environment of the gut, and colonization of the host. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.