Yazar "Li, Victor C." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A bio-inspired solution to alleviate anisotropy of 3D printed engineered cementitious composites (3DP-ECC): Knitting/tilting filaments(Elsevier, 2023) Zhou, Wen; Mcgee, Wes; Gokce, H. Suleyman; Li, Victor C.Widely reported anisotropy in 3D printed cementitious structures has been a primary concern to structural integrity, especially for fiber-reinforced cementitious material, e.g., engineered cementitious composites (ECC). To alleviate the anisotropy present in 3D printed ECC (3DP-ECC), two innovative printing patterns, knitting and tilting filaments, were proposed, mimicking the natural crossed-lamellar structure of conch shells. 3D spatial paths were designed to allocate tensile/flexural resistance to multiple directions and to create an interwoven interface system to strengthen the structure. Four-point bending tests loading from three different directions were conducted. It was found that knitted and tilted filaments revealed superior or comparable bending performance to cast ECC in two favorable orientations. Furthermore, flexural performance in the weakest orientation was notably improved by knitting and tilting, with up-to-179% increases in flexural strength compared with that of parallel filaments. This novel approach holds great promise in alleviating anisotropy of 3DP-ECC without introducing additional reinforcement.Öğe Time-dependent fresh properties characterization of 3D printing engineered cementitious composites (3DP-ECC): On the evaluation of buildability(Elsevier Sci Ltd, 2022) Zhou, Wen; McGee, Wes; Zhu, He; Gokce, H. Suleyman; Li, Victor C.Failure of the structure due to poor buildability is a major concern in 3D printing of cementitious materials. Evaluation of buildability based on fresh material properties and print parameters is of significance. In this paper, the buildability of printable engineered cementitious composites was investigated and quantified at the material and the structural scale. Fresh ECC material showed excellent load capacity and deformation resistance at the material scale, therefore preventing material failure of the bottom layers, as confirmed by constant shear rate tests and incremental loading tests. To predict vertical deformation of a 3DP structure, a time-dependent strainstress model of printable ECC was proposed and validated based on the green strength evolution of the material and the buildup rate of the designed structure. At the structural scale, the approach of predicting critical height at self-buckling failure based on stiffness evolution was validated by printing a straight wall and a cylinder structure.