A bio-inspired solution to alleviate anisotropy of 3D printed engineered cementitious composites (3DP-ECC): Knitting/tilting filaments

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Widely reported anisotropy in 3D printed cementitious structures has been a primary concern to structural integrity, especially for fiber-reinforced cementitious material, e.g., engineered cementitious composites (ECC). To alleviate the anisotropy present in 3D printed ECC (3DP-ECC), two innovative printing patterns, knitting and tilting filaments, were proposed, mimicking the natural crossed-lamellar structure of conch shells. 3D spatial paths were designed to allocate tensile/flexural resistance to multiple directions and to create an interwoven interface system to strengthen the structure. Four-point bending tests loading from three different directions were conducted. It was found that knitted and tilted filaments revealed superior or comparable bending performance to cast ECC in two favorable orientations. Furthermore, flexural performance in the weakest orientation was notably improved by knitting and tilting, with up-to-179% increases in flexural strength compared with that of parallel filaments. This novel approach holds great promise in alleviating anisotropy of 3DP-ECC without introducing additional reinforcement.

Açıklama

Anahtar Kelimeler

3D printed engineered cementitious composites (3DP-ECC), Anisotropy, Knitting, Flexural property, Interface

Kaynak

Automation in Construction

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

155

Sayı

Künye