A MATRIX PRESENTATION OF HIGHER ORDER DERIVATIVES OF BEZIER CURVE AND SURFACE

dc.contributor.authorAydin, Tuba Agirman
dc.date.accessioned2024-10-04T18:48:07Z
dc.date.available2024-10-04T18:48:07Z
dc.date.issued2021
dc.departmentBayburt Üniversitesien_US
dc.description.abstractIn this study, the Bezier curves and surfaces, which have an important place in interactive design applications, are expressed in matrix form using a special matrix that gives the coefficients of the Bernstein base polynomial. The matrix forms of higher order derivatives of the Bezier curves and surfaces are obtained. It is demonstrated by numerical examples that the bidirectional transition between the control points and parametric equations of the Bezier curves and surfaces can be easily achieved using these matrix forms. In addition, it is demonstrated that this type of curve and surface, whose control points are known, its higher order derivatives can be calculated without it's parametric equations. In this study, the Bezier curves and surfaces are presented in a more easily understandable and easy to use format in algebraic form for designers.en_US
dc.identifier.doi10.46939/J.Sci.Arts-21.1-a08
dc.identifier.endpage90en_US
dc.identifier.issn1844-9581
dc.identifier.issue1en_US
dc.identifier.startpage77en_US
dc.identifier.urihttps://doi.org/10.46939/J.Sci.Arts-21.1-a08
dc.identifier.urihttp://hdl.handle.net/20.500.12403/2908
dc.identifier.wosWOS:000637970300008en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherEditura Bibliotheca-Bibliotheca Publ Houseen_US
dc.relation.ispartofJournal of Science and Artsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBezier curvesen_US
dc.subjectBezier surfacesen_US
dc.subjectthe matrix formen_US
dc.subjectthe derivative for Bezieren_US
dc.titleA MATRIX PRESENTATION OF HIGHER ORDER DERIVATIVES OF BEZIER CURVE AND SURFACEen_US
dc.typeArticleen_US

Dosyalar