Existence of one weak solution for p(X)-biharmonic equations involving a concave-convex nonlinearity

dc.authorid14828196300
dc.authorid6507285451
dc.authorid6506217572
dc.contributor.authorMashiyev R.A.
dc.contributor.authorAlisoy G.
dc.contributor.authorEkincioglu I.
dc.date.accessioned20.04.201910:49:12
dc.date.accessioned2019-04-20T21:43:27Z
dc.date.available20.04.201910:49:12
dc.date.available2019-04-20T21:43:27Z
dc.date.issued2017
dc.departmentBayburt Üniversitesien_US
dc.description.abstractIn the present paper, using variational approach and the theory of the variable exponent Lebesgue spaces, the existence of nontrivial weak solutions to a fourth order elliptic equation involving a p(x)-biharmonic operator and a concave-convex nonlinearity the Navier boundary conditions is obtained. © 2017, Drustvo Matematicara Srbije. All rights reserved.en_US
dc.identifier.endpage307
dc.identifier.issn0025-5165
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85049183567en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage296
dc.identifier.urihttps://hdl.handle.net/20.500.12403/561
dc.identifier.volume69
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherDrustvo Matematicara Srbije
dc.relation.ispartofMatematicki Vesniken_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConcave-convex nonlinearities
dc.subjectCritical points
dc.subjectEkeland’s variational principle
dc.subjectMountain Pass Theorem
dc.subjectNavier boundary conditions
dc.subjectP(x)-biharmonic operator
dc.subjectConcave-convex nonlinearities
dc.subjectCritical points
dc.subjectEkeland’s variational principle
dc.subjectMountain Pass Theorem
dc.subjectNavier boundary conditions
dc.subjectP(x)-biharmonic operator
dc.titleExistence of one weak solution for p(X)-biharmonic equations involving a concave-convex nonlinearityen_US
dc.typeArticleen_US

Dosyalar