YAPAY SİNİR AĞLARI VERİ ÖN İŞLEMESİ: ZAMAN SERİSİ TAHMİNLEMESİ İÇİN GEREKLİ MİDİR?

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Yapay sinir ağları zaman serisi tahmini problemlerinin çözümünde sıklıkla kullanılan modellerdir. ARMA veya ARIMA gibi geleneksel zaman serisi tahmin modelleri ile karşılaştırıldıklarında da bazı avantajlara sahiptirler. Sinir ağları normal dağılıma uygunluk gibi değişkenlerin sağlaması gereken bazı istatistiksel varsayımların sağlanmasını gerektirmez. Bununla birlikte normalizasyon, trenden arındırma veya mevsimsel düzeltme gibi bazı veri ön işleme uygulamaları ile daha iyi sonuçların üretildiği de bazı çalışmalarda görülmektedir. Bu çalışmada, trend, mevsimsellik ve birim kök içeren zaman serilerine uygulanan veri ön işleme uygulamalarının tahmin sonuçlarına etkileri araştırılmıştır. Bu amaçla, bazı değişkenlere ait aylık ve çeyreklik veriler kullanılarak doğrusal olmayan oto regresif (NAR) ve çok katmanlı algılayıcı (MLP) modellerinin tahmin performansları araştırılmıştır. Sonuçlara göre veri ön işleme uygulamaları arasında önemli farklılıklar tespit edilmekle birlikte, fark serileri ile oluşturulan MLP modellerinin en kötü sonuçları ürettiği açık bir şekilde görülmüştür
Neural networks (NNs) are a commonly used method to solve the time series-forecasting problem. NNs have some advantages compared with traditional forecasting models, such as auto regressive moving average or auto regressive integrated moving average. NNs do not need to have any statistical assumption like normal distribution. However, data preprocessing, normalization, trend adjusting, seasonal adjusting, or both differencing can introduce better results in some studies. In this study, we have tried to investigate whether data preprocessing methods are useful for time series data, which contains trend, seasonality or unit root. For this purpose, we collected the real time series data belonging to monthly or quarterly observations and used nonlinear autoregressive (NAR) and multilayer perceptron (MLP) models. Although we obtained significant differences between data preprocessing methods, the structure of MLP with differenced variable produced the worst results

Açıklama

Anahtar Kelimeler

Çevre Çalışmaları, Hukuk, İktisat, İş, İşletme, İşletme Finans, Kamu Yönetimi, Kentsel Çalışmalar, Siyasi Bilimler, Uluslararası İlişkiler

Kaynak

Akademik Araştırmalar ve Çalışmalar Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

9

Sayı

17

Künye