Rotation Invariant Feature Extraction of Handwritten Signature Images

dc.contributor.authorEngin, M. Alptekin
dc.date.accessioned2024-10-04T18:58:48Z
dc.date.available2024-10-04T18:58:48Z
dc.date.issued2021
dc.departmentBayburt Üniversitesien_US
dc.descriptionIEEE SMC Society; IEEE Turkey Sectionen_US
dc.description2021 Innovations in Intelligent Systems and Applications Conference, ASYU 2021 -- 6 October 2021 through 8 October 2021 -- Elazig -- 174400en_US
dc.description.abstractThis paper presents extraction of rotation invariant features of handwritten signature images for classification. Initially, curvelet transform was applied to all signature image in the database. The mean and standard deviation values of each curvelet sub bands were used as features. Rotation invariance was obtained by applying cycle shift around the total spectral energy values of curvelet sub bands. Then, the classification process was carried out with the obtained features. The performance was compared with the method without cycle shift. As a result, it has been determined that the presented method gives the most successful accuracy using the support vector machine classifier. © 2021 IEEE.en_US
dc.identifier.doi10.1109/ASYU52992.2021.9598960
dc.identifier.isbn978-166543405-8
dc.identifier.scopus2-s2.0-85123215133en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/ASYU52992.2021.9598960
dc.identifier.urihttp://hdl.handle.net/20.500.12403/4036
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2021 Innovations in Intelligent Systems and Applications Conference, ASYU 2021en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcurvelet transformen_US
dc.subjectimage classificationen_US
dc.subjectrotation invariant feature extractionen_US
dc.titleRotation Invariant Feature Extraction of Handwritten Signature Imagesen_US
dc.title.alternativeImza imgelerinin Snuflandmlmasmda Yonelim Bagunsiz Ozniteliklerin Crkanlmasien_US
dc.typeConference Objecten_US

Dosyalar