AN APPROXIMATE SOLUTION FOR LORENTZIAN SPHERICAL TIMELIKE CURVES

dc.contributor.authorAydin, Tuba Agirman
dc.date.accessioned2024-10-04T18:48:11Z
dc.date.available2024-10-04T18:48:11Z
dc.date.issued2020
dc.departmentBayburt Üniversitesien_US
dc.description.abstractIn this article, the differential equation of lorentzian spherical timelike curves is obtained in E-1(4). It is seen that the differential equation characterizing Lorentzian spherical timelike curves is equivalent to a linear, third order, differential equation with variable coefficients. It is impossible to solve these equations analytically. In this article, a new numerical technique based on hermite polynomials is presented using the initial conditions for the approximate solution. This method is called the modified hermite matrix-collocation method. With this technique, the solution of the problem is reduced to the solution of an algebraic equation system and the approximate solution is obtained. In addition, the validity and applicability of the technique is explained by a sample application.en_US
dc.identifier.doi10.46939/J.Sci.Arts-20.3-a08
dc.identifier.endpage596en_US
dc.identifier.issn1844-9581
dc.identifier.issue3en_US
dc.identifier.startpage587en_US
dc.identifier.urihttps://doi.org/10.46939/J.Sci.Arts-20.3-a08
dc.identifier.urihttp://hdl.handle.net/20.500.12403/2957
dc.identifier.wosWOS:000575547600008en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherEditura Bibliotheca-Bibliotheca Publ Houseen_US
dc.relation.ispartofJournal of Science and Artsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMinkowski space-timeen_US
dc.subjectmodified hermiteen_US
dc.subjectlorentzian sphereen_US
dc.subjectspherical timelike curvesen_US
dc.titleAN APPROXIMATE SOLUTION FOR LORENTZIAN SPHERICAL TIMELIKE CURVESen_US
dc.typeArticleen_US

Dosyalar