Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ayazoglu (Mashiyev), Rabil" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Existence and extinction of solutions for parabolic equations with nonstandard growth nonlinearity
    (Hacettepe Univ, Fac Sci, 2024) Ayazoglu (Mashiyev), Rabil; Alisoy, Gulizar; Akbulut, Sezgin; Aydin, Tuba Agirman
    In this paper, we consider an initial boundary value problem for a class of p ( ) -Laplacian parabolic equation with nonstandard nonlinearity in a bounded domain. By using new approach, we obtain the global and decay of existence of the solutions. Moreover, the precise decay estimates of solutions before the occurrence of the extinction are derived.
  • Küçük Resim Yok
    Öğe
    Existence of multiple solutions of Schrodinger-Kirchhoff-type equations involving the p(.) -Laplacian in RN
    (Wiley, 2020) Ayazoglu (Mashiyev), Rabil; Akbulut, Sezgin; Akkoyunlu, Ebubekir
    In this paper, we prove the existence of multiple solutions for the nonhomogeneous Schrodinger-Kirchhoff-type problem involving the p(.)-Laplacian {-(1+b integral(N)(R)1/p(x)vertical bar del u vertical bar(p(x)) dx) Delta(p(x))u+V(x)vertical bar u vertical bar p((x)-2) u=f(x,u) + g(x) in R-N, u is an element of W-1,W-p(.)(R-N), where b >= 0 is a constant, N >= 2, Delta(p)(.)u := div(vertical bar del u vertical bar p((.)-2)del u) is the p(.)-Laplacian operator, p : R-N -> R is Lipschitz continuous, V : R-N -> R is a coercive type potential, integral : R-N x R -> R and g : R-N -> R functions verifying suitable conditions. We propose different assumptions on the nonlinear term f : R-N x R -> R to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points, respectively. The solutions are obtained by the Mountain Pass Theorem, Ekeland variational principle, and Krasnoselskii genus theory.
  • Küçük Resim Yok
    Öğe
    EXISTENCE OF ONE WEAK SOLUTION FOR p(x)-BIHARMONIC EQUATIONS INVOLVING A CONCAVE-CONVEX NONLINEARITY
    (Math Soc Serbia-Drustvo Matematicara Srbije, 2017) Ayazoglu (Mashiyev), Rabil; Alisoy, Gulizar; Ekincioglu, Ismail
    In the present paper, using variational approach and the theory of the variable exponent Lebesgue spaces, the existence of nontrivial weak solutions to a fourth order elliptic equation involvinga p(x)-biharmonic operator and a concave-convex nonlinearity the Navier boundary conditionsis obtained.
  • Küçük Resim Yok
    Öğe
    On global existence and bounds for the blow-up time in a semilinear heat equation involving parametric variable sources
    (Acad Sciences, 2021) Ayazoglu (Mashiyev), Rabil; Akkoyunlu, Ebubekir; Aydin, Tuba Agirman
    This paper is concerned with the blow-up of the solutions to a semilinear heat equation with a reaction given by parametric variable sources. Some conditions to parameters and exponents of sources are given to obtain lower-upper bounds for the time of blow-up and some global existence results.
  • Küçük Resim Yok
    Öğe
    Uniform Boundedness of Kantorovich Operators in Variable Exponent Lebesgue Spaces
    (Univ Nis, Fac Sci Math, 2019) Ayazoglu (Mashiyev), Rabil; Akbulut, Sezgin; Akkoyunlu, Ebubekir
    In this paper, the Kantorovich operators K-n, n is an element of N are shown to be uniformly bounded in variable exponent Lebesgue spaces on the closed interval [0, 1]. Also an upper estimate is obtained for the difference K-n(f) - f for functions f of regularity of order 1 and 2 measured in variable exponent Lebesgue spaces, which is of interest on its own and can be applied to other problems related to the Kantorovich operators.

| Bayburt Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bayburt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Bayburt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim