Uniform Boundedness of Kantorovich Operators in Variable Exponent Lebesgue Spaces

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Univ Nis, Fac Sci Math

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper, the Kantorovich operators K-n, n is an element of N are shown to be uniformly bounded in variable exponent Lebesgue spaces on the closed interval [0, 1]. Also an upper estimate is obtained for the difference K-n(f) - f for functions f of regularity of order 1 and 2 measured in variable exponent Lebesgue spaces, which is of interest on its own and can be applied to other problems related to the Kantorovich operators.

Açıklama

Anahtar Kelimeler

Variable exponent Lebesgue spaces, Kantorovich operators, uniform boundedness

Kaynak

Filomat

WoS Q Değeri

Q2

Scopus Q Değeri

Q3

Cilt

33

Sayı

18

Künye