Uniform Boundedness of Kantorovich Operators in Variable Exponent Lebesgue Spaces
Küçük Resim Yok
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Univ Nis, Fac Sci Math
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, the Kantorovich operators K-n, n is an element of N are shown to be uniformly bounded in variable exponent Lebesgue spaces on the closed interval [0, 1]. Also an upper estimate is obtained for the difference K-n(f) - f for functions f of regularity of order 1 and 2 measured in variable exponent Lebesgue spaces, which is of interest on its own and can be applied to other problems related to the Kantorovich operators.
Açıklama
Anahtar Kelimeler
Variable exponent Lebesgue spaces, Kantorovich operators, uniform boundedness
Kaynak
Filomat
WoS Q Değeri
Q2
Scopus Q Değeri
Q3
Cilt
33
Sayı
18