Existence of multiple solutions of Schrodinger-Kirchhoff-type equations involving the p(.) -Laplacian in RN

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we prove the existence of multiple solutions for the nonhomogeneous Schrodinger-Kirchhoff-type problem involving the p(.)-Laplacian {-(1+b integral(N)(R)1/p(x)vertical bar del u vertical bar(p(x)) dx) Delta(p(x))u+V(x)vertical bar u vertical bar p((x)-2) u=f(x,u) + g(x) in R-N, u is an element of W-1,W-p(.)(R-N), where b >= 0 is a constant, N >= 2, Delta(p)(.)u := div(vertical bar del u vertical bar p((.)-2)del u) is the p(.)-Laplacian operator, p : R-N -> R is Lipschitz continuous, V : R-N -> R is a coercive type potential, integral : R-N x R -> R and g : R-N -> R functions verifying suitable conditions. We propose different assumptions on the nonlinear term f : R-N x R -> R to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points, respectively. The solutions are obtained by the Mountain Pass Theorem, Ekeland variational principle, and Krasnoselskii genus theory.

Açıklama

Anahtar Kelimeler

Ekeland variational principle, Krasnoselskii genus theory, Lebesgue and Sobolev space with variable exponent, Mountain Pass Theorem, p(.)-Laplacian, Schrodinger-Kirchhoff-type equation

Kaynak

Mathematical Methods in the Applied Sciences

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

43

Sayı

17

Künye