Electrorheological Fluids Equations Involving Variable Exponent with Dependence on the Gradient via Mountain Pass Techniques
dc.authorid | 14828196300 | |
dc.authorid | 6506217572 | |
dc.contributor.author | Mashiyev R.A. | |
dc.contributor.author | Ekincioglu I. | |
dc.date.accessioned | 20.04.201910:49:12 | |
dc.date.accessioned | 2019-04-20T21:43:32Z | |
dc.date.available | 20.04.201910:49:12 | |
dc.date.available | 2019-04-20T21:43:32Z | |
dc.date.issued | 2016 | |
dc.department | Bayburt Üniversitesi | en_US |
dc.description.abstract | This article deals with a quasilinear elliptic equation with variable exponent under a homogenous Dirichlet boundary-value condition, where nonlinearity also depends on the gradient of the solution. By using an iterative method based on Mountain Pass techniques, the existence of a positive solution is obtained. © 2016, Copyright © Taylor & Francis Group, LLC. | en_US |
dc.identifier.doi | 10.1080/01630563.2016.1205088 | |
dc.identifier.endpage | 1157 | |
dc.identifier.issn | 0163-0563 | |
dc.identifier.issue | 9 | |
dc.identifier.scopus | 2-s2.0-84986903110 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1144 | |
dc.identifier.uri | https://dx.doi.org/10.1080/01630563.2016.1205088 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12403/591 | |
dc.identifier.volume | 37 | |
dc.identifier.wos | WOS:000382951000006 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis Inc. | |
dc.relation.ispartof | Numerical Functional Analysis and Optimization | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Iteration methods | |
dc.subject | Mountain Pass theorem | |
dc.subject | p(x)-Laplacian | |
dc.subject | variable exponent Sobolev spaces | |
dc.subject | Control nonlinearities | |
dc.subject | Electrorheological fluids | |
dc.subject | Landforms | |
dc.subject | Linear equations | |
dc.subject | Sobolev spaces | |
dc.subject | Dirichlet boundary | |
dc.subject | Iteration method | |
dc.subject | Mountain pass theorem | |
dc.subject | P (x)-Laplacian | |
dc.subject | Positive solution | |
dc.subject | Quasilinear elliptic equations | |
dc.subject | Variable exponent Sobolev space | |
dc.subject | Variable exponents | |
dc.subject | Iterative methods | |
dc.subject | Iteration methods | |
dc.subject | Mountain Pass theorem | |
dc.subject | p(x)-Laplacian | |
dc.subject | variable exponent Sobolev spaces | |
dc.subject | Control nonlinearities | |
dc.subject | Electrorheological fluids | |
dc.subject | Landforms | |
dc.subject | Linear equations | |
dc.subject | Sobolev spaces | |
dc.subject | Dirichlet boundary | |
dc.subject | Iteration method | |
dc.subject | Mountain pass theorem | |
dc.subject | P (x)-Laplacian | |
dc.subject | Positive solution | |
dc.subject | Quasilinear elliptic equations | |
dc.subject | Variable exponent Sobolev space | |
dc.subject | Variable exponents | |
dc.subject | Iterative methods | |
dc.title | Electrorheological Fluids Equations Involving Variable Exponent with Dependence on the Gradient via Mountain Pass Techniques | en_US |
dc.type | Article | en_US |