Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm
Küçük Resim Yok
Tarih
2015
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Techno Press
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases. Copyright © 2015 Techno-Press, Ltd.
Açıklama
Anahtar Kelimeler
AISC-ASD, Composite beams, Genetic algorithm, Semi-rigid connection, Weight optimization, Composite beams and girders, Concrete slabs, Concretes, Design, Finite element method, Floors, Genetic algorithms, MATLAB, Steel construction, Structural frames, AISC-ASD, Allowable stress design, American institute of steel constructions, Composite beam, Displacement and stress constraints, Optimization procedures, Semirigid connections, Weight optimization, Algorithms, AISC-ASD, Composite beams, Genetic algorithm, Semi-rigid connection, Weight optimization, Composite beams and girders, Concrete slabs, Concretes, Design, Finite element method, Floors, Genetic algorithms, MATLAB, Steel construction, Structural frames, AISC-ASD, Allowable stress design, American institute of steel constructions, Composite beam, Displacement and stress constraints, Optimization procedures, Semirigid connections, Weight optimization, Algorithms
Kaynak
Steel and Composite Structures
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
19
Sayı
4