Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm

Küçük Resim Yok

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Techno Press

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases. Copyright © 2015 Techno-Press, Ltd.

Açıklama

Anahtar Kelimeler

AISC-ASD, Composite beams, Genetic algorithm, Semi-rigid connection, Weight optimization, Composite beams and girders, Concrete slabs, Concretes, Design, Finite element method, Floors, Genetic algorithms, MATLAB, Steel construction, Structural frames, AISC-ASD, Allowable stress design, American institute of steel constructions, Composite beam, Displacement and stress constraints, Optimization procedures, Semirigid connections, Weight optimization, Algorithms, AISC-ASD, Composite beams, Genetic algorithm, Semi-rigid connection, Weight optimization, Composite beams and girders, Concrete slabs, Concretes, Design, Finite element method, Floors, Genetic algorithms, MATLAB, Steel construction, Structural frames, AISC-ASD, Allowable stress design, American institute of steel constructions, Composite beam, Displacement and stress constraints, Optimization procedures, Semirigid connections, Weight optimization, Algorithms

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

19

Sayı

4

Künye